Citation: | XI Yijia, PAN Haiyu, WU Zhenglin, et al. Research Progress on Regulatory Effects and Mechanism of Akkermansia muciniphila on Glycolipid Metabolism and Intestinal Health[J]. Science and Technology of Food Industry, 2025, 46(8): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060336. |
[1] |
ZHENG X J, XIE G X, ZHAO A H, et al. The footprints of gut microbial-mammalian co-metabolism[J]. Journal of Proteome Research,2011,10(12):5512−5522. doi: 10.1021/pr2007945
|
[2] |
XIE G X, LI X, LI H K, et al. Toward personalized nutrition:comprehensive phytoprofiling and metabotyping[J]. Journal of Proteome Research,2013,12(4):1547−1559. doi: 10.1021/pr301222b
|
[3] |
DERRIEN M, VAUGHAN E E, PLUGGE C M, et al. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(Pt 5):1469−1476.
|
[4] |
VAN PASSEL M W, KANT R, ZOETENDAL E G, et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes[J]. PLoS One,2011,6(3):e16876. doi: 10.1371/journal.pone.0016876
|
[5] |
GEERLINGS S Y, KOSTOPOULOS I, DE VOS W M, et al. Akkermansia muciniphila in the human gastrointestinal tract:When, where, and how?[J]. Microorganisms, 2018, 6(3): 75.
|
[6] |
OTTMAN N. Host immunostimulation and substrate utilization of the gut symbiont Akkermansia muciniphila[D]. Wageningen:Wageningen University, 2015.
|
[7] |
DERRIEN M, COLLADO M C, BEN-AMOR K, et al. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract[J]. Applied and Environmental Microbiology,2008,74(5):1646−1648. doi: 10.1128/AEM.01226-07
|
[8] |
COLLADO M C, DERRIEN M, ISOLAURI E, et al. Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly[J]. Applied and Environmental Microbiology,2007,73(23):7767−7770. doi: 10.1128/AEM.01477-07
|
[9] |
KONG F L, HUA Y T, ZENG B, et al. Gut microbiota signatures of longevity[J]. Current Biology,2016,26(18):R832−R833. doi: 10.1016/j.cub.2016.08.015
|
[10] |
ELLEKILDE M, KRYCH L, HANSEN C H, et al. Characterization of the gut microbiota in leptin deficient obese mice-Correlation to inflammatory and diabetic parameters[J]. Research in Veterinary Science,2014,96(2):241−250. doi: 10.1016/j.rvsc.2014.01.007
|
[11] |
EVERARD A, BELZER C, GEURTS L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(22):9066−9071.
|
[12] |
ZHANG X Y, SHEN D Q, FANG Z W, et al. Human gut microbiota changes reveal the progression of glucose intolerance[J]. PLoS One,2013,8(8):e71108. doi: 10.1371/journal.pone.0071108
|
[13] |
DAO M C, EVERARD A, ARON-WISNEWSKY J, et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity:relationship with gut microbiome richness and ecology[J]. Gut,2016,65(3):426−436. doi: 10.1136/gutjnl-2014-308778
|
[14] |
FORSLUND K, HILDEBRAND F, NIELSEN T, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota[J]. Nature,2015,528(7581):262−266. doi: 10.1038/nature15766
|
[15] |
SHIN N R, LEE J C, LEE H Y, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice[J]. Gut,2014,63(5):727−735. doi: 10.1136/gutjnl-2012-303839
|
[16] |
HANSEN C H, KRYCH L, NIELSEN D S, et al. Early life treatment with vancomycin propagates Akkermansia muciniphila and reduces diabetes incidence in the NOD mouse[J]. Diabetologia,2012,55(8):2285−2294. doi: 10.1007/s00125-012-2564-7
|
[17] |
DEPOMMIER C, EVERARD A, DRUART C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers:a proof-of-concept exploratory study[J]. Nature Medicine,2019,25(7):1096−1103. doi: 10.1038/s41591-019-0495-2
|
[18] |
ZHANG L, QIN Q Q, LIU M N, et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in streptozotocin-induced diabetic rats[J]. Pathogens and Disease, 2018, 76(4).
|
[19] |
HAN Y Q, LING Q, WU L, et al. Akkermansia muciniphila inhibits nonalcoholic steatohepatitis by orchestrating TLR2-activated gammadeltaT17 cell and macrophage polarization[J]. Gut Microbes,2023,15(1):2221485. doi: 10.1080/19490976.2023.2221485
|
[20] |
LI J, LIN S Q, VANHOUTTE P M, et al. Akkermansia muciniphila Protects against atherosclerosis by preventing metabolic endotoxemia-Induced inflammation in apoe−/−mice[J]. Circulation,2016,133(24):2434−2446. doi: 10.1161/CIRCULATIONAHA.115.019645
|
[21] |
PLOVIER H, EVERARD A, DRUART C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nature Medicine,2017,23(1):107−113. doi: 10.1038/nm.4236
|
[22] |
YOON H S, CHO C H, YUN M S, et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice[J]. Nature Microbiology,2021,6(5):563−573. doi: 10.1038/s41564-021-00880-5
|
[23] |
CHENG J Y, LEI Z Y, FANG C, et al. Pasteurized Akkermansia muciniphila and its outer membrane protein Amuc_1100 alleviate alcoholic liver disease through modulating gut microbiota and host metabolism[J]. Food Bioscience,2024,59:104072. doi: 10.1016/j.fbio.2024.104072
|
[24] |
DEPOMMIER C, VAN HUL M, EVERARD A, et al. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice[J]. Gut Microbes,2020,11(5):1231−1245. doi: 10.1080/19490976.2020.1737307
|
[25] |
WEI F X, YANG X Y, ZHANG M H, et al. Akkermansia muciniphila enhances egg quality and the lipid profile of egg yolk by improving lipid metabolism[J]. Frontiers in Microbiology,2022,13:927245. doi: 10.3389/fmicb.2022.927245
|
[26] |
YANG G K, JIANG A X, CAI H M, et al. Supplementation with Akkermansia muciniphila improved glucose metabolism disorder in common carp (Cyprinus carpio L.)[J]. Aquaculture,2023,572:739465. doi: 10.1016/j.aquaculture.2023.739465
|
[27] |
SALMINEN S, COLLADO M C, ENDO A, et al. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J]. Nature Reviews Gastroenterology & Hepatology,2021,18(9):649−667.
|
[28] |
HALFVARSON J, BRISLAWN C J, LAMENDELLA R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease[J]. Nature Microbiology,2017,2:17004. doi: 10.1038/nmicrobiol.2017.4
|
[29] |
MACCHIONE I G, LOPETUSO L R, IANIRO G, et al. Akkermansia muciniphila:key player in metabolic and gastrointestinal disorders[J]. European Review for Medical and Pharmacological Sciences,2019,23(18):8075−8083.
|
[30] |
MORGAN X C, KABAKCHIEV B, WALDRON L, et al. Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease[J]. Genome Biology,2015,16(1):67. doi: 10.1186/s13059-015-0637-x
|
[31] |
LOPEZ-SILES M, ENRICH-CAPO N, ALDEGUER X, et al. Alterations in the abundance and co-occurrence of Akkermansia muciniphila and Faecalibacterium prausnitzii in the colonic mucosa of inflammatory bowel disease subjects[J]. Frontiers in Cellular and Infection Microbiology,2018,8:281. doi: 10.3389/fcimb.2018.00281
|
[32] |
BIAN X Y, WU W R, YANG L Y, et al. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice[J]. Frontiers in Microbiology,2019,10:2259. doi: 10.3389/fmicb.2019.02259
|
[33] |
纪漫萍. Akkermansia muciniphila对肠黏膜屏障的保护作用及机制研究[D]. 北京:北京协和医学院, 2021. [JI M P. The protective effect and mechanism of Akkermansia muciniphila on intestinal mucosal barrier[D]. Beijing:Peking Union Medical College, 2021.]
JI M P. The protective effect and mechanism of Akkermansia muciniphila on intestinal mucosal barrier[D]. Beijing: Peking Union Medical College, 2021.
|
[34] |
杨鑫. 山羊Akkermansia muciniphila的分离鉴定及其对肠道免疫的影响[D]. 重庆:西南大学, 2022. [YANG X. Isolation and identification of Akkermansia muciniphila from goats and its impact on intestinal immunity[D]. Chongqing:Southwest University, 2022.]
YANG X. Isolation and identification of Akkermansia muciniphila from goats and its impact on intestinal immunity[D]. Chongqing: Southwest University, 2022.
|
[35] |
ZHENG T, HAO H N, LIU Q Q, et al. Effect of extracelluar vesicles derived from Akkermansia muciniphila on intestinal barrier in colitis mice[J]. Nutrients, 2023, 15(22): 4722.
|
[36] |
KANG C S, BAN M, CHOI E J, et al. Extracellular vesicles derived from gut microbiota, especially Akkermansia muciniphila, protect the progression of dextran sulfate sodium-induced colitis[J]. PLoS One,2013,8(10):e76520. doi: 10.1371/journal.pone.0076520
|
[37] |
GANESH B P, KLOPFLEISCH R, LOH G, et al. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice[J]. PLoS One,2013,8(9):e74963. doi: 10.1371/journal.pone.0074963
|
[38] |
SEREGIN S S, GOLOVCHENKO N, SCHAF B, et al. NLRP6 protects IL10 −/− mice from colitis by limiting colonization of Akkermansia muciniphila[J]. Cell Reports,2017,19(4):733−745. doi: 10.1016/j.celrep.2017.03.080
|
[39] |
QU S, ZHENG Y H, HUANG Y C, et al. Excessive consumption of mucin by over-colonized Akkermansia muciniphila promotes intestinal barrier damage during malignant intestinal environment[J]. Frontiers in Microbiology,2023,14:1111911. doi: 10.3389/fmicb.2023.1111911
|
[40] |
OTTMAN N, DAVIDS M, SUAREZ-DIEZ M, et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle[J]. Applied and Environmental Microbiology, 2017, 83(18).
|
[41] |
PNG C W, LINDEN S K, GILSHENAN K S, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria[J]. American Journal of Gastroenterology,2010,105(11):2420−2428. doi: 10.1038/ajg.2010.281
|
[42] |
CHIA L W, HORNUNG B, AALVINK S, et al. Deciphering the trophic interaction between Akkermansia muciniphila and the butyrogenic gut commensal Anaerostipes caccae using a metatranscriptomic approach[J]. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2018,111(6):859−873. doi: 10.1007/s10482-018-1040-x
|
[43] |
DERRIEN M, VAN BAARLEN P, HOOIVELD G, et al. Modulation of mucosal immune response, tolerance, and proliferation in mice colonized by the mucin-degrader Akkermansia muciniphila[J]. Frontiers in Microbiology,2011,2:166.
|
[44] |
QU S W, FAN L N, QI Y D, et al. Akkermansia muciniphila alleviates dextran sulfate sodium (DSS)-induced acute colitis by NLRP3 activation[J]. Microbiology Spectrum,2021,9(2):e73021.
|
[45] |
VAN DER LUGT B, VAN BEEK A A, AALVINK S, et al. Akkermansia muciniphila ameliorates the age-related decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1 (-/Delta7) mice[J]. Immunity & Ageing,2019,16:6.
|
[46] |
BARCENA C, VALDES-MAS R, MAYORAL P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice[J]. Nature Medicine,2019,25(8):1234−1242. doi: 10.1038/s41591-019-0504-5
|
[47] |
REUNANEN J, KAINULAINEN V, HUUSKONEN L, et al. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer[J]. Applied and Environmental Microbiology,2015,81(11):3655−3662. doi: 10.1128/AEM.04050-14
|
[48] |
CHELAKKOT C, CHOI Y, KIM D K, et al. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions[J]. Experimental and Molecular Medicine,2018,50(2):e450. doi: 10.1038/emm.2017.282
|
[49] |
ASHRAFIAN F, SHAHRIARY A, BEHROUZI A, et al. Akkermansia muciniphila-Derived extracellular vesicles as a mucosal delivery vector for amelioration of obesity in mice[J]. Frontiers in Microbiology,2019,10:2155. doi: 10.3389/fmicb.2019.02155
|
[50] |
GARCIA D, SHAW R J. AMPK:Mechanisms of cellular energy sensing and restoration of metabolic balance[J]. Molecular Cell,2017,66(6):789−800. doi: 10.1016/j.molcel.2017.05.032
|
[51] |
AHMADIAN M, ABBOTT M J, TANG T, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype[J]. Cell Metabolism,2011,13(6):739−748. doi: 10.1016/j.cmet.2011.05.002
|
[52] |
WU N, ZHENG B, SHAYWITZ A, et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1[J]. Molecular Cell,2013,49(6):1167−1175. doi: 10.1016/j.molcel.2013.01.035
|
[53] |
EGAN D F, SHACKELFORD D B, MIHAYLOVA M M, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy[J]. Science,2011,331(6016):456−461. doi: 10.1126/science.1196371
|
[54] |
赵少倩. 人类肠道常驻菌Akkermansia muciniphila、Bacteroides uniformis改善糖脂代谢的作用及机制研究[D]. 上海:上海交通大学, 2016. [ZHAO S Q. The role and mechanism of Akkermansia muciniphila and Bacteroides uniformis, resident bacteria in the human gut, in improving glucose and lipid metabolism[D]. Shanghai:Shanghai Jiao Tong University, 2016.]
ZHAO S Q. The role and mechanism of Akkermansia muciniphila and Bacteroides uniformis, resident bacteria in the human gut, in improving glucose and lipid metabolism[D]. Shanghai: Shanghai Jiao Tong University, 2016.
|
[55] |
HUANG D Q, GAO J, LI C, et al. A potential probiotic bacterium for antipsychotic-induced metabolic syndrome:Mechanisms underpinning how Akkermansia muciniphila subtype improves olanzapine-induced glucose homeostasis in mice[J]. Psychopharmacology,2021,238(9):2543−2553. doi: 10.1007/s00213-021-05878-9
|
[56] |
SUN M B, LI D, HUA M, et al. Black bean husk and black rice anthocyanin extracts modulated gut microbiota and serum metabolites for improvement in type 2 diabetic rats[J]. Food & Function,2022,13(13):7377−7391.
|
[57] |
SHI M X, YUE Y S, MA C, et al. Pasteurized Akkermansia muciniphila ameliorate the LPS-induced intestinal barrier dysfunction via modulating AMPK and NF-kappaB through TLR2 in Caco-2 cells[J]. Nutrients, 2022, 14(4):764.
|
[58] |
XIA X, YAN J H, SHEN Y F, et al. Berberine improves glucose metabolism in diabetic rats by inhibition of hepatic gluconeogenesis[J]. PLoS One,2011,6(2):e16556. doi: 10.1371/journal.pone.0016556
|
[59] |
LE L J, TUTEJA G, WHITE P, et al. CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis[J]. Cell Metab,2009,10(1):55−62. doi: 10.1016/j.cmet.2009.06.006
|
[60] |
LIU Y, DENTIN R, CHEN D, et al. A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange[J]. Nature,2008,456(7219):269−273. doi: 10.1038/nature07349
|
[61] |
MONTMINY M, KOO S H, ZHANG X. The CREB family:key regulators of hepatic metabolism[J]. Ann Endocrinol(Paris),2004,65(1):73−75. doi: 10.1016/S0003-4266(04)95634-X
|
[62] |
HORIKE N, SAKODA H, KUSHIYAMA A, et al. AMP-activated protein kinase activation increases phosphorylation of glycogen synthase kinase 3beta and thereby reduces cAMP-responsive element transcriptional activity and phosphoenolpyruvate carboxykinase C gene expression in the liver[J]. Journal of Biological Chemistry,2008,283(49):33902−33910. doi: 10.1074/jbc.M802537200
|
[63] |
STAHMANN N, WOODS A, CARLING D, et al. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta[J]. Molecular and Cellular Biology,2006,26(16):5933−5945. doi: 10.1128/MCB.00383-06
|
[64] |
LIU T H, WEI H, ZHANG L J, et al. Metformin attenuates lung ischemia-reperfusion injury and necroptosis through AMPK pathway in type 2 diabetic recipient rats[J]. BMC Pulmonary Medicine,2024,24(1):237. doi: 10.1186/s12890-024-03056-z
|
[65] |
TAO W, CAO W G, YU B, et al. Hawk tea prevents high-fat diet-induced obesity in mice by activating the AMPK/ACC/SREBP1c signaling pathways and regulating the gut microbiota[J]. Food & Function,2022,13(11):6056−6071.
|
[66] |
COHEN L, NEUMAN M G. Cannabis and the gastrointestinal tract[J]. Journal of Pharmacy and Pharmaceutical Sciences,2020,23:301−313. doi: 10.18433/jpps31242
|
[67] |
BASU P P, ALOYSIUS M M, SHAH N J, et al. Review article:The endocannabinoid system in liver disease, a potential therapeutic target[J]. Alimentary Pharmacology & Therapeutics,2014,39(8):790−801.
|
[68] |
PERTWEE R G, HOWLETT A C, ABOOD M E, et al. International union of basic and clinical pharmacology. LXXIX. Cannabinoid receptors and their ligands:beyond CB(1) and CB(2)[J]. Pharmacological Reviews,2010,62(4):588−631. doi: 10.1124/pr.110.003004
|
[69] |
BAZWINSKY-WUTSCHKE I, ZIPPRICH A, DEHGHANI F. Endocannabinoid system in hepatic glucose metabolism, fatty liver disease, and cirrhosis[J]. International Journal of Molecular Sciences, 2019, 20(10).
|
[70] |
ALMOGI-HAZAN O, OR R. Cannabis, the endocannabinoid system and immunity-the journey from the bedside to the bench and back[J]. International Journal of Molecular Sciences, 2020, 21(12).
|
[71] |
KUNOS G. Understanding metabolic homeostasis and imbalance:what is the role of the endocannabinoid system?[J]. American Journal of Medicine, 2007, 120(9 Suppl 1):S18-S24.
|
[72] |
CHANDA D, KIM Y H, KIM D K, et al. Activation of cannabinoid receptor type 1 (Cb1r) disrupts hepatic insulin receptor signaling via cyclic AMP-response element-binding protein H (Crebh)-mediated induction of Lipin1 gene[J]. Journal of Biological Chemistry,2012,287(45):38041−38049. doi: 10.1074/jbc.M112.377978
|
[73] |
KUNOS G, OSEI-HYIAMAN D, BATKAI S, et al. Should peripheral CB(1) cannabinoid receptors be selectively targeted for therapeutic gain?[J]. Trends in Pharmacological Sciences,2009,30(1):1−7. doi: 10.1016/j.tips.2008.10.001
|
[74] |
KERSTEN S, DESVERGNE B, WAHLI W. Roles of PPARs in health and disease[J]. Nature,2000,405(6785):421−424. doi: 10.1038/35013000
|
[75] |
WAHLI W, MICHALIK L. PPARs at the crossroads of lipid signaling and inflammation[J]. Trends in Endocrinology and Metabolism,2012,23(7):351−363. doi: 10.1016/j.tem.2012.05.001
|
[76] |
MANDARD S, MULLER M, KERSTEN S. Peroxisome proliferator-activated receptor alpha target genes[J]. Cellular and Molecular Life Sciences,2004,61(4):393−416. doi: 10.1007/s00018-003-3216-3
|
[77] |
PISTIS M, MELIS M. From surface to nuclear receptors:the endocannabinoid family extends its assets[J]. Current Medicinal Chemistry,2010,17(14):1450−1467. doi: 10.2174/092986710790980014
|
[78] |
HASAN A U, RAHMAN A, KOBORI H. Interactions between host PPARs and gut microbiota in health and disease[J]. International Journal of Molecular Sciences,2019,20(2):387. doi: 10.3390/ijms20020387
|
[79] |
DECARA J, RIVERA P, LOPEZ-GAMBERO A J, et al. Peroxisome proliferator-activated receptors:experimental targeting for the treatment of inflammatory bowel diseases[J]. Frontiers in Pharmacology,2020,11:730. doi: 10.3389/fphar.2020.00730
|
[80] |
CHEN M T, HOU P F, ZHOU M, et al. Resveratrol attenuates high-fat diet-induced non-alcoholic steatohepatitis by maintaining gut barrier integrity and inhibiting gut inflammation through regulation of the endocannabinoid system[J]. Clinical Nutrition,2020,39(4):1264−1275. doi: 10.1016/j.clnu.2019.05.020
|
[81] |
肖琳, 刘琴, 熊理守. 嗜粘蛋白阿克曼氏菌通过调控CB2R缓解肠易激综合征大鼠内脏高敏[J]. 中山大学学报(医学科学版),2023,44(3):379−385. [XIAO Lin, LIU Qin, XIONG Lishou, et al. Akkermansia muciniphila alleviates visceral hypersensitivity in irritable bowel syndrome rats via regulating CB2R[J]. Journal of Sun Yat-sen University(Medical Scienes),2023,44(3):379−385.]
XIAO Lin, LIU Qin, XIONG Lishou, et al. Akkermansia muciniphila alleviates visceral hypersensitivity in irritable bowel syndrome rats via regulating CB2R[J]. Journal of Sun Yat-sen University(Medical Scienes), 2023, 44(3): 379−385.
|
[82] |
GHADERI F, SOTOODEHNEJADNEMATALAHI F, HAJEBRAHIMI Z, et al. Effects of active, inactive, and derivatives of Akkermansia muciniphila on the expression of the endocannabinoid system and PPARs genes[J]. Scientific Reports,2022,12(1):10031. doi: 10.1038/s41598-022-13840-8
|
[83] |
KONDO T, KISHI M, FUSHIMI T, et al. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation[J]. Journal of Agricultural and Food Chemistry,2009,57(13):5982−5986. doi: 10.1021/jf900470c
|
[84] |
KAMADA N, CHEN G Y, INOHARA N, et al. Control of pathogens and pathobionts by the gut microbiota[J]. Nature Immunology,2013,14(7):685−690. doi: 10.1038/ni.2608
|
[85] |
OTTMAN N, REUNANEN J, MEIJERINK M, et al. Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function[J]. PLoS One,2017,12(3):e173004.
|
[86] |
ASHRAFIAN F, BEHROUZI A, SHAHRIARY A, et al. Comparative study of effect of Akkermansia muciniphila and its extracellular vesicles on toll-like receptors and tight junction[J]. Gastroenterol Hepatol Bed Bench,2019,12(2):163−168.
|
[87] |
潘盛强. 基于“内病外治”探讨洋冰膏介导膝关节创伤性滑膜炎TLR2/NF-κB信号通路的机制研究[D]. 兰州:甘肃中医药大学, 2023. [PAN S Q. Exploring the mechanism of TLR2/NF-κB signaling pathway mediated by Yangbing Gao in traumatic synovitis of the knee joint based on "internal disease and external treatment"[D]. Lanzhou:Gansu University of Traditional Chinese Medicine, 2023.]
PAN S Q. Exploring the mechanism of TLR2/NF-κB signaling pathway mediated by Yangbing Gao in traumatic synovitis of the knee joint based on "internal disease and external treatment"[D]. Lanzhou: Gansu University of Traditional Chinese Medicine, 2023.
|
[88] |
ZHAO S Q, LIU W, WANG J Q, et al. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice[J]. Journal of Molecular Endocrinology,2017,58(1):1−14. doi: 10.1530/JME-16-0054
|
[89] |
ZHOU Y M, HU L H, ZHANG H L, et al. Guominkang formula alleviate inflammation in eosinophilic asthma by regulating immune balance of Th1/2 and Treg/Th17 cells[J]. Frontiers in Pharmacology,2022,13:978421. doi: 10.3389/fphar.2022.978421
|
[90] |
HIRAHARA K, NAKAYAMA T. CD4+ T-cell subsets in inflammatory diseases:beyond the Th1/Th2 paradigm[J]. International Immunology,2016,28(4):163−171. doi: 10.1093/intimm/dxw006
|
[91] |
KUCZMA M P, SZUREK E A, CEBULA A, et al. Commensal epitopes drive differentiation of colonic T(regs)[J]. Science Advances,2020,6(16):eaaz3186. doi: 10.1126/sciadv.aaz3186
|
[92] |
JOSEFOWICZ S Z, NIEC R E, KIM H Y, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation[J]. Nature,2012,482(7385):395−399. doi: 10.1038/nature10772
|
[93] |
KATIRAEI S, DE VRIES M R, COSTAIN A H, et al. Akkermansia muciniphila exerts lipid-lowering and immunomodulatory effects without affecting neointima formation in hyperlipidemic APOE*3-Leiden. CETP mice[J]. Molecular Nutrition & Food Research,2020,64(15):e1900732.
|
[94] |
CORREA-OLIVEIRA R, FACHI J L, VIEIRA A, et al. Regulation of immune cell function by short-chain fatty acids[J]. Clinical & Translational Immunology,2016,5(4):e73.
|
[95] |
RODRIGUES H G, TAKEO S F, CURI R, et al. Fatty acids as modulators of neutrophil recruitment, function and survival[J]. European Journal of Pharmacology,2016,785:50−58. doi: 10.1016/j.ejphar.2015.03.098
|
[96] |
CHANG P V, HAO L M, OFFERMANNS S, et al. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(6):2247−2252.
|
[97] |
DALILE B, VAN OUDENHOVE L, VERVLIET B, et al. The role of short-chain fatty acids in microbiota-gut-brain communication[J]. Nature Reviews Gastroenterology & Hepatology,2019,16(8):461−478.
|
[98] |
LI Z P, HENNING S M, LEE R P, et al. Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers[J]. Food & Function,2015,6(8):2487−2495.
|
[99] |
李杰, 张志旭. 表没食子儿茶素没食子酸酯对葡聚糖硫酸钠诱导的小鼠结肠炎的改善作用[J]. 食品工业科技,2023,44(13):390−397. [LI Jie, ZHANG Zhixu. Improving effects of epigallocatechin-3-gallate (EGCG) on dextran sulfate sodium (DSS)-Induced Colitis[J]. Science and Technology of Food Industry,2023,44(13):390−397.]
LI Jie, ZHANG Zhixu. Improving effects of epigallocatechin-3-gallate (EGCG) on dextran sulfate sodium (DSS)-Induced Colitis[J]. Science and Technology of Food Industry, 2023, 44(13): 390−397.
|
[100] |
邓梅, 张露, 罗晶, 等. 乌鸡肽对葡聚糖硫酸钠诱导的溃疡性结肠炎小鼠的保护作用[J]. 食品科学,2023,44(19):148−156. [DENG Mei, ZHANG Lu, LUO Jing, et al. Protective effect of Gallus domesticlus brisson peptides on dextran sodium sulfate-induced ulcerative colitis in mice[J]. Food Science,2023,44(19):148−156.] doi: 10.7506/spkx1002-6630-20221031-316
DENG Mei, ZHANG Lu, LUO Jing, et al. Protective effect of Gallus domesticlus brisson peptides on dextran sodium sulfate-induced ulcerative colitis in mice[J]. Food Science, 2023, 44(19): 148−156. doi: 10.7506/spkx1002-6630-20221031-316
|
[101] |
PERRAUDEAU F, MCMURDIE P, BULLARD J, et al. Improvements to postprandial glucose control in subjects with type 2 diabetes:A multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation[J]. BMJ Open Diabetes Research & Care, 2020, 8(1).
|
[102] |
GUO X, ZHANG J, WU F, et al. Different subtype strains of Akkermansia muciniphila abundantly colonize in southern China[J]. Journal of Applied Microbiology,2016,120(2):452−459. doi: 10.1111/jam.13022
|
[103] |
MARCIAL-COBA M S, SAABY L, KNOCHEL S, et al. Dark chocolate as a stable carrier of microencapsulated Akkermansia muciniphila and Lactobacillus casei[J]. FEMS Microbiology Letters, 2019, 366(2).
|
[104] |
SHARON Y G. A rising star:a comprehensive approach to Akkermansia muciniphila ecosystems, interactions and applications[D]. Wageningen:Wageningen University, 2023.
|
[105] |
WU H T, QI S H, YANG R X, et al. Strategies for high cell density cultivation of Akkermansia muciniphila and its potential metabolism[J]. Microbiology Spectrum,2024,12(1):e238623.
|
[106] |
DI W X, ZHANG Y C, ZHANG X Y, et al. Heterologous expression of P9 from Akkermansia muciniphila increases the GLP-1 secretion of intestinal L cells[J]. World Journal of Microbiology & Biotechnology,2024,40(7):199.
|