Citation: | LIU Yuqian, WANG Ming, YUAN Wei, et al. Inhibitory Activity and Transcriptional Mechanism of PostbioYDFF against Pseudomonas aeruginosa[J]. Science and Technology of Food Industry, xxxx, x(x): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024060069. |
[1] |
ALIMI B A, LAWAL R, ODETUNDE O N. Food safety and microbiological hazards associated with retail meat at butchery outlets in north-central Nigeria[J]. Food Control,2022,139:109061. doi: 10.1016/j.foodcont.2022.109061
|
[2] |
AZAM M W, KHAN A U. Updates on the pathogenicity status of Pseudomonas aeruginosa[J]. Drug Discovery Today,2019,24(1):350−359. doi: 10.1016/j.drudis.2018.07.003
|
[3] |
杜峰, 谭文彬. 铜绿假单胞菌耐药机制的研究进展[J]. 中国病原生物学杂志,2023,18(10):1231−1234,1241. [DU Feng, TAN Wenbin. Advances in the study of drug resistance mechanism of Pseudomonas aeruginosa[J]. Journal of Pathogen Biology,2023,18(10):1231−1234,1241.]
DU Feng, TAN Wenbin. Advances in the study of drug resistance mechanism of Pseudomonas aeruginosa[J]. Journal of Pathogen Biology, 2023, 18(10): 1231−1234,1241.
|
[4] |
LIANG J L, HUANG T Y, LI X J, et al. Germicidal effect of intense pulsed light on Pseudomonas aeruginosa in food processing[J]. Frontiers in Microbiology,2023,14:1247364−1247364. doi: 10.3389/fmicb.2023.1247364
|
[5] |
TENG X, ZHANG M, MUJUMDAR A S, et al. Inhibition of nitrite in prepared dish of Brassica chinensis L. during storage via non-extractable phenols in hawthorn pomace:A comparison of different extraction methods[J]. Food Chemistry,2022,393:133344−133344. doi: 10.1016/j.foodchem.2022.133344
|
[6] |
孙瑶, 乔梦伟, 刘诗宇, 等. 乳杆菌对致病假单胞菌的抑制作用研究进展[J]. 中国生物工程杂志,2021,41(8):103−109. [SUN Yao, QIAO Mengwei, LIU Shiyu, et al. Research progress on the inhibitory effect of Lactobacillus on pathogenic pseudomonas[J]. China Biotechnology,2021,41(8):103−109.]
SUN Yao, QIAO Mengwei, LIU Shiyu, et al. Research progress on the inhibitory effect of Lactobacillus on pathogenic pseudomonas[J]. China Biotechnology, 2021, 41(8): 103−109.
|
[7] |
HOSSEN T S, KYEONGJUN K, MD A, et al. Korean kimchi-derived lactic acid bacteria inhibit foodborne pathogenic biofilm growth on seafood and food processing surface materials[J]. Food Control,2021,129:108276. doi: 10.1016/j.foodcont.2021.108276
|
[8] |
SEVAL A H, BUKET K. Antimicrobial activity of a bacteriocin produced by Enterococcus faecalis KT11 against some pathogens and antibiotic-resistant bacteria[J]. Korean Journal for Food Science of Animal Resources,2018,38(5):1064−1079. doi: 10.5851/kosfa.2018.e40
|
[9] |
IQBAL H M, RAHAMAN M M F, KUMAR R P, et al. Listeria monocytogenes biofilm inhibition on food contact surfaces by application of postbiotics from Lactobacillus curvatus B. 67 and Lactobacillus plantarum M. 2[J]. Food Research International,2021,148:110595−110595. doi: 10.1016/j.foodres.2021.110595
|
[10] |
SEPPO S, CARMEN C M, AKIHITO E, et al. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics[J]. Nature Reviews. Gastroenterology & Hepatology,2021,18(9):649−667.
|
[11] |
COLOMBO P T, GOMES C A, ELIENE P, et al. Postbiotics:An overview of concepts, inactivation technologies, health effects, and driver trends[J]. Trends in Food Science & Technology,2023,138:199−214.
|
[12] |
SAMIR D M, LONGXIN Q, A. T M, et al. Health benefits of postbiotics produced by E. coli Nissle 1917 in functional yogurt enriched with cape gooseberry (Physalis peruviana L. )[J]. Fermentation,2022,8(3):128−128. doi: 10.3390/fermentation8030128
|
[13] |
HOSSEN T S, JUN-HA P, KIM K, et al. Antibiofilm efficacy of Leuconostoc mesenteroides J. 27-derived postbiotic and food-grade essential oils against Vibrio parahaemolyticus, Pseudomonas aeruginosa, and Escherichia coli alone and in combination, and their application as a green preservative in the seafood industry[J]. Food Research International,2022,156:111163−111163. doi: 10.1016/j.foodres.2022.111163
|
[14] |
PUCCETTI M, XROUDAKI, S, RICCI M, et al. Postbiotic-enabled targeting of the host-microbiota-pathogen interface:Hints of antibiotic decline?[J]. Pharmaceutics,2020,12(7):624. doi: 10.3390/pharmaceutics12070624
|
[15] |
LV X R, YANG L, YU J, et al. Purification, characterization, and action mechanism of Plantaricin DL3, a novel bacteriocin against Pseudomonas aeruginosa produced by Lactobacillus plantarum DL3 from Chinese Suan-Tsai[J]. European Food Research and Technology,2018,244(2):323−331.
|
[16] |
DA-HYE L, SUN K B, SEOK-SEONG K. Bacteriocin of Pediococcus acidilactici HW01 inhibits biofilm formation and virulence factor production by Pseudomonas aeruginosa[J]. Probiotics and Antimicrobial Proteins,2020,12(1):73−81. doi: 10.1007/s12602-019-09623-9
|
[17] |
MARTINS D M, PAULA T A, ELISABETH N, et al. Cell-free supernatant of probiotic bacteria exerted antibiofilm and antibacterial activities against Pseudomonas aeruginosa:A novel biotic therapy[J]. Frontiers in pharmacology,2023,14:1152588−1152588. doi: 10.3389/fphar.2023.1152588
|
[18] |
REZAEI Z, KHANZADI S, SALARI A. Biofilm formation and antagonistic activity of Lacticaseibacillus rhamnosus (PTCC1712) and Lactiplantibacillus plantarum (PTCC1745)[J]. Amb Express,2021,11:1−7. doi: 10.1186/s13568-020-01157-6
|
[19] |
WIJESUNDARA N M, RUPASINGHE H P V. Bactericidal and anti-bofilm activity of ethanol extracts derived from selected medicinal plants against Streptococcus pyogenes[J]. Molecules,2019,24(6):1165−1165. doi: 10.3390/molecules24061165
|
[20] |
ZUOJI Y, LIUMEI Y, DINGBIN L, et al. Effects of daphnetin on biofilm formation and motility of Pseudomonas aeruginosa[J]. Frontiers in Cellular and Infection Microbiology,2022,12:1033540−1033540. doi: 10.3389/fcimb.2022.1033540
|
[21] |
高毅敏, 李娜, 李新鸣, 等. 血链球菌cpnp培养上清液抑制铜绿假单胞菌生长和生物膜的作用[J]. 中国微生态学杂志,2024,36(06):637−646,656. [GAO Yimin, LI Na, LI Xinming, et al. Inhibition of growth and biofilm of Pseudomonas aeruginosa by Streptococcus sanguinis cpnp culture supernatant[J]. Chinese Journal of Microecology,2024,36(06):637−646,656.]
GAO Yimin, LI Na, LI Xinming, et al. Inhibition of growth and biofilm of Pseudomonas aeruginosa by Streptococcus sanguinis cpnp culture supernatant[J]. Chinese Journal of Microecology, 2024, 36(06): 637−646,656.
|
[22] |
王嘉康, 唐浩国, 陈静, 等. 水飞蓟素对S. aureus ATCC25923生物膜及其毒力因子的影响[J]. 食品与机械,2024,40(3):26−32,43. [WANG Jiakang, TANG Haoguo, CHEN Jing, et al. Effects of silymarin on S. aureus ATCC25923 biofilm and its virulence factors[J]. Food and Machinery,2024,40(3):26−32,43.]
WANG Jiakang, TANG Haoguo, CHEN Jing, et al. Effects of silymarin on S. aureus ATCC25923 biofilm and its virulence factors[J]. Food and Machinery, 2024, 40(3): 26−32,43.
|
[23] |
YA W N, MA M, ZHANG Y J, et al. Antibacterial mechanism of sucrose laurate against Bacillus cereus by attacking multiple targets and its application in milk beverage[J]. Food Research International,2022,154:111018−111018. doi: 10.1016/j.foodres.2022.111018
|
[24] |
林梦娇, 陈亚东, 刘洋, 等. 半滑舌鳎vstm2a基因的响应细菌感染的表达模式和功能的研究[J]. 上海海洋大学学报,2024,33(6):1299−1312. [LIN Mengjiao, CHEN Yadong, LIU Yang, et al. The expression pattern and function of vstm2a gene in response to bacterial infection in Cynoglossus semilaevis[J]. Journal of Shanghai Ocean University,2024,33(6):1299−1312.]
LIN Mengjiao, CHEN Yadong, LIU Yang, et al. The expression pattern and function of vstm2a gene in response to bacterial infection in Cynoglossus semilaevis[J]. Journal of Shanghai Ocean University, 2024, 33(6): 1299−1312.
|
[25] |
JIAHANG Z, ZHIWEI Z, WEN L, et al. Transcriptome analysis revealed a positive role of ethephon on chlorophyll metabolism of Zoysia japonica under cold stress[J]. Plants,2022,11(3):442−442. doi: 10.3390/plants11030442
|
[26] |
CRISTIANO-FAJARDO S A, FLORES C, FLORES N, et al. Glucose limitation and glucose uptake rate determines metabolite production and sporulation in high cell density continuous cultures of Bacillus amyloliquefaciens 83[J]. Journal of Biotechnology,2019,299:57−65. doi: 10.1016/j.jbiotec.2019.04.027
|
[27] |
WU M, LU T, FU J P, et al. Antibacterial mechanism of protocatechuic acid against Yersinia enterocolitica and its application in pork[J]. Food Control,2022,133:108573. doi: 10.1016/j.foodcont.2021.108573
|
[28] |
DUPORT C, ZIGHA A, ROSENFELD E, et al. Control of enterotoxin gene expression in Bacillus cereus F4430/73 involves the redox-sensitive ResDE signal transduction system[J]. Journal of Bacteriology,2007,189(6):2581−2581. doi: 10.1128/JB.00066-07
|
[29] |
JESSICA A, SARA O, SUMANA V, et al. Studying acetylation of aconitase isozymes by genetic code expansion[J]. Frontiers in Chemistry,2022,10:862483−862483. doi: 10.3389/fchem.2022.862483
|
[30] |
IRMAK B T, DIDEM B, BARıŞ G, et al. Extremophilic Natrinema versiforme against Pseudomonas aeruginosa quorum sensing and biofilm[J]. Frontiers in Microbiology,2020,11:79. doi: 10.3389/fmicb.2020.00079
|
[31] |
JIA S, HONG H, YANG Q, et al. TMT-based proteomic analysis of the fish-borne spoiler Pseudomonas psychrophila subjected to chitosan oligosaccharides in fish juice system[J]. Food Microbiology,2020,90(prepublish):103494.
|
[32] |
MARIA S, REKHA A, KYU K K. Roles of two-component systems in Pseudomonas aeruginosa virulence[J]. International Journal of Molecular Sciences,2021,22(22):12152−12152. doi: 10.3390/ijms222212152
|
[33] |
GELLATLY S L, BAINS M, BREIDENSTEIN E B M, et al. Novel roles for two-component regulatory systems in cytotoxicity and virulence-related properties in Pseudomonas aeruginosa[J]. AIMS Microbiology,2018,4(1):173−191. doi: 10.3934/microbiol.2018.1.173
|
[34] |
PAPENFORT K, BASSLER L. Quorum sensing signal-response systems in Gram-negative bacteria[J]. Nature Reviews. Microbiology,2016,14(9):576−588. doi: 10.1038/nrmicro.2016.89
|
[35] |
TSIRY R, QUENTIN L, PIERRE D, et al. The formation of biofilms by Pseudomonas aeruginosa:A review of the natural and synthetic compounds interfering with control mechanisms[J]. BioMed Research International,2015,2015:759348.
|
[36] |
TIAN M J, WU Z Y ZHANG R J, et al. A new mode of swimming in singly flagellated Pseudomonas aeruginosa[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(14):e2120508119−e2120508119.
|
[37] |
PEJČIĆ M, STOJANOVIĆ-RADIĆ Z, GENČIĆ M, et al. Anti-virulence potential of basil and sage essential oils:Inhibition of biofilm formation, motility and pyocyanin production of Pseudomonas aeruginosa isolates[J]. Food and Chemical Toxicology,2020,141(prepublish):111431.
|
[38] |
李交昆, 南美花, 吴学玲, 等. 细菌鞭毛在生理活动中的作用[J]. 生命科学,2018,30(6):673−679. [LI Jiaokun, NAN Meihua, WU Xueling, et al. The functions of bacterial flagella in physiological activity[J]. Chinese Bulletin of Life Sciences,2018,30(6):673−679.]
LI Jiaokun, NAN Meihua, WU Xueling, et al. The functions of bacterial flagella in physiological activity[J]. Chinese Bulletin of Life Sciences, 2018, 30(6): 673−679.
|
[39] |
WASSERMANN T, MEINIKE J K, IVANYSHYN K, et al. The phenotypic evolution of Pseudomonas aeruginosa populations changes in the presence of subinhibitory concentrations of ciprofloxacin[J]. Microbiology (Reading, England),2016,162(5):865−875. doi: 10.1099/mic.0.000273
|