GUO Weiyun, ZHANG Keke, LI Guanghui, et al. Effects of Chlorogenic Acid on Physicochemical and Structural Properties of Wheat Starch under Microwave Irradiation[J]. Science and Technology of Food Industry, 2025, 46(8): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040432.
Citation: GUO Weiyun, ZHANG Keke, LI Guanghui, et al. Effects of Chlorogenic Acid on Physicochemical and Structural Properties of Wheat Starch under Microwave Irradiation[J]. Science and Technology of Food Industry, 2025, 46(8): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040432.

Effects of Chlorogenic Acid on Physicochemical and Structural Properties of Wheat Starch under Microwave Irradiation

More Information
  • Received Date: April 28, 2024
  • Available Online: February 10, 2025
  • To investigate the effects of chlorogenic acid on the physicochemical properties and structural characteristics of wheat starch under microwave conditions, microwave treatment was used to analyze the changes in solubility, swelling, freeze-thaw stability, transparency, and sedimentation of chlorogenic acid wheat starch complex. The crystal structure was characterized and the particle morphology was observed. Results showed that adding chlorogenic acid under microwave power of 700 W can increase the solubility of the complex by 3.57 times, increase the expansion, coagulation, and freeze-thaw stability by 34.6%, 14.02%, and 37.88%, respectively, while reducing transparency by 62.97%. X-ray diffraction results showed that the crystalline form of starch changed from the original A type to B+V type, and the crystallinity of the complex decreased significantly with the increase of chlorogenic acid addition. Fourier transform infrared spectroscopy showed that the absorption peak of the complex at 3384 cm−1 was enhanced and widened, and the short range orderliness increased by 40% by adding chlorogenic acid, while the microwave effect could reduce the peak intensity and cause changes in the fingerprint area. It can be seen that chlorogenic acid can effectively affect the structure of wheat starch under microwave conditions, thereby improving its physicochemical properties.
  • loading
  • [1]
    ZHANG Y F, LOU H Y, GUO D D, et al. Identifying changes in the wheat kernel proteome under heat stress using iTRAQ[J]. The Crop Journal,2018,6(6):600−610. doi: 10.1016/j.cj.2018.04.003
    [2]
    VAN R J, SIMSEK S, OYEYIAKA S A, et al. Wheat starch structure-function relationship in breadmaking:A review[J]. Comprehensive Reviews in Food Science and Food Safety,2023,22(3):2292−2309. doi: 10.1111/1541-4337.13147
    [3]
    张守花, 张新海. 响应面法优化超声波-微波辅助酶解制备抗性淀粉工艺研究[J]. 中国食品添加剂,2021,32(3):6−13. [ZHANG S H, ZHANG X H. Optimization of ultrasonic-microwave assisted enzymatic hydrolysis of resistant starch by response surface methodology[J]. China Food Additives,2021,32(3):6−13.]

    ZHANG S H, ZHANG X H. Optimization of ultrasonic-microwave assisted enzymatic hydrolysis of resistant starch by response surface methodology[J]. China Food Additives, 2021, 32(3): 6−13.
    [4]
    LU Y J, LI M, PAN J X, et al. Interactions between tea products and wheat starch during retrogradation[J]. Food Bioscience,2020,34(C):100523.
    [5]
    HAN X Q, ZHANG M W, ZHANG R F, et al. Physicochemical interactions between rice starch and different polyphenols and structural characterization of their complexes[J]. LWT,2020,125(C):109227.
    [6]
    CHI C D, LI X X, ZHANG Y P, et al. Modulating in vitro digestibility and predicted glycemic index of rice starch gels by complexation with gallic acid[J]. Food Hydrocolloids,2018,89:821−828.
    [7]
    XIE Q R, LIU X R, LIU H Y, et al. Insight into the effect of garlic peptides on the physicochemical and anti-staling properties of wheat starch[J]. International Journal of Biological Macromolecules,2022,229:363−371.
    [8]
    崔欣阳, 邢佳浩, 王睿思, 等. 枸杞叶黄酮对多种淀粉理化性质的影响[J]. 食品安全导刊,2022(6):42−45,49. [CUI X Y, XING J H, WANG R S, et al. Effects of flavonoids from lycium barbarum leaves on physicochemical properties of various starch[J]. Food Safety Guide,2022(6):42−45,49.] doi: 10.3969/j.issn.1674-0270.2022.6.spaqdk202206018

    CUI X Y, XING J H, WANG R S, et al. Effects of flavonoids from lycium barbarum leaves on physicochemical properties of various starch[J]. Food Safety Guide, 2022(6): 42−45,49. doi: 10.3969/j.issn.1674-0270.2022.6.spaqdk202206018
    [9]
    ZHAO B B, WANG B L, ZHENG B D, et al. Effects and mechanism of high-pressure homogenization on the characterization and digestion behavior of lotus seed starch–green tea polyphenol complexes[J]. Journal of Functional Foods,2019,57:173−181. doi: 10.1016/j.jff.2019.04.016
    [10]
    杨小玲. 淀粉基复合物及其抗消化特性研究进展[J]. 化学与粘合,2023,45(5):464−468. [YANG X L. Research progress in anti-digestibility of starch-based complex[J]. Chemistry and Adhesion,2023,45(5):464−468.] doi: 10.3969/j.issn.1001-0017.2023.05.018

    YANG X L. Research progress in anti-digestibility of starch-based complex[J]. Chemistry and Adhesion, 2023, 45(5): 464−468. doi: 10.3969/j.issn.1001-0017.2023.05.018
    [11]
    XU T, LI X X, JI S Y, et al. Starch modification with phenolics:methods, physicochemical property alteration, and mechanisms of glycaemic control[J]. Trends in Food Science & Technology,2021,111:12−26.
    [12]
    武思敏, 袁梅, 满佳旭, 等. 绿原酸对UVB损伤人永生化表皮角质细胞的保护作用[J]. 食品与生物技术学报,2023,42(5):96−101. [WU S M, YUAN M, MAN J X, et al. Protective effect of chlorogenic acid on UVB damaged HaCaT cells[J]. Journal of Food Science and Biotechnology,2023,42(5):96−101.] doi: 10.3969/j.issn.1673-1689.2023.05.013

    WU S M, YUAN M, MAN J X, et al. Protective effect of chlorogenic acid on UVB damaged HaCaT cells[J]. Journal of Food Science and Biotechnology, 2023, 42(5): 96−101. doi: 10.3969/j.issn.1673-1689.2023.05.013
    [13]
    QIN W, LI X. Isochlorogenic acid A attenuates acute lung injury induced by LPS via Nf-κB/NLRP3 signaling pathway[J]. American Journal of Translational Research,2019,11(11):7018−7026.
    [14]
    肖遥. 几种食源多酚对淀粉特性的影响研究[D]. 郑州:河南工业大学, 2018. [XIAO Y. Effect of several foodborne polyphenols on starch properties[D]. Zhengzhou:Henan University of Technology, 2018.]

    XIAO Y. Effect of several foodborne polyphenols on starch properties[D]. Zhengzhou: Henan University of Technology, 2018.
    [15]
    WANG M, SUN M Q, ZHANG Y Y, et al. Effect of microwave irradiation-retrogradation treatment on the digestive and physicochemical properties of starches with different crystallinity[J]. Food Chemistry,2019,298:125015. doi: 10.1016/j.foodchem.2019.125015
    [16]
    XU X J, CHEN Y Z, LUO Z G, et al. Different variations in structures of A- and B-type starches subjected to microwave treatment and their relationships with digestibility[J]. LWT,2018,99:179−187.
    [17]
    李佳钰, 赵进龙, 王雪纯, 等. 微波处理对三种淀粉结构及其理化特性的影响[J]. 食品工业科技,2024,45(24):90−97. [LI J Y, ZHAO J L, WANG X C, et al. Effects of microwave treatment on the structure and physicochemical properties of three kinds of starches[J]. Science and Technology of Food Industry,2024,45(24):90−97.]

    LI J Y, ZHAO J L, WANG X C, et al. Effects of microwave treatment on the structure and physicochemical properties of three kinds of starches[J]. Science and Technology of Food Industry, 2024, 45(24): 90−97.
    [18]
    陈秉彦, 郭泽镔, 许丽宾, 等. 微波处理对莲子淀粉理化性质的影响[J]. 现代食品科技,2015,31(3):213−219. [CHEN B Y, GUO Z B, XU L B, et al. Effect of physical and chemical properties of lotus seed starch by microwave treatment[J]. Modern Food Science and Technology,2015,31(3):213−219.]

    CHEN B Y, GUO Z B, XU L B, et al. Effect of physical and chemical properties of lotus seed starch by microwave treatment[J]. Modern Food Science and Technology, 2015, 31(3): 213−219.
    [19]
    罗志刚, 于淑娟, 杨连生. 微波场对小麦淀粉性质的影响[J]. 化工学报,2007(11):2871−2875. [LUO Z G, YU S J, YANG L S. Effect of microwave irradiation on properties of wheat starches[J]. Journal of Chemical Industry and Engineering (China),2007(11):2871−2875.] doi: 10.3321/j.issn:0438-1157.2007.11.031

    LUO Z G, YU S J, YANG L S. Effect of microwave irradiation on properties of wheat starches[J]. Journal of Chemical Industry and Engineering (China), 2007(11): 2871−2875. doi: 10.3321/j.issn:0438-1157.2007.11.031
    [20]
    许敏, 韩雪琴, 陈天鸽, 等. 大米淀粉-多酚复合物在不同条件下的释放特性分析[J]. 现代食品科技,2024,40(5):111−118. [XU M, HAN X Q, CHEN T G, et al. Release characteristics of rice starch-polyphenol complex under different conditions[J]. Modern Food Science and Technology,2024,40(5):111−118.]

    XU M, HAN X Q, CHEN T G, et al. Release characteristics of rice starch-polyphenol complex under different conditions[J]. Modern Food Science and Technology, 2024, 40(5): 111−118.
    [21]
    WANG H W, XIAO N Y, WANG X T, et al. Effect of pregelatinized starch on the characteristics, microstructures, and quality attributes of glutinous rice flour and dumplings[J]. Food Chemistry, 2019, 283.
    [22]
    孙晓莎. 荞麦黄酮对小麦淀粉特性影响及其相互作用研究[D]. 郑州:河南工业大学, 2017. [SUN X S. Effect of buckwheat flavonoids on wheat starch properties and their interactions[D]. Zhengzhou:Henan University of Tecnology, 2017.]

    SUN X S. Effect of buckwheat flavonoids on wheat starch properties and their interactions[D]. Zhengzhou: Henan University of Tecnology, 2017.
    [23]
    KANG J, HHUNG Z Y, TIAN X N, et al. Arabinoxylan of varied structural features distinctively affects the functional and in vitro digestibility of wheat starch[J]. Food Hydrocolloids,2023,140:108−615.
    [24]
    LI Y, CHENG W, QIU X, et al. Effects of β-amylase hydrolysis on the structural, physicochemical and storage properties of wheat starch[J]. Journal of Cereal Science,2023,109:103605. doi: 10.1016/j.jcs.2022.103605
    [25]
    李欣, 高菲, 刘紫薇, 等. 高粱淀粉-多酚复合物与高粱淀粉的理化性质比较分析[J]. 中国粮油学报,2022,37(6):98−102. [LI X, GAO F, LIU Z W, et al. Comparison and analysis of physicochemical properties of sorghum starch-polyphenol complex and sorghum starch[J]. Journal of the Chinese Cereals and Oils Association,2022,37(6):98−102.] doi: 10.3969/j.issn.1003-0174.2022.06.015

    LI X, GAO F, LIU Z W, et al. Comparison and analysis of physicochemical properties of sorghum starch-polyphenol complex and sorghum starch[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(6): 98−102. doi: 10.3969/j.issn.1003-0174.2022.06.015
    [26]
    李世杰, 段春月, 刘畅. 微波对板栗淀粉结构和理化性质的影响[J]. 中国粮油学报,2020,35(2):31−35,49. [LI S J, DUAN C Y, LIU C. Effects of microwave treatment on structural and physicochemical properties of chestnut starch[J]. Journal of the Chinese Cereals and Oils Association,2020,35(2):31−35,49.] doi: 10.3969/j.issn.1003-0174.2020.02.007

    LI S J, DUAN C Y, LIU C. Effects of microwave treatment on structural and physicochemical properties of chestnut starch[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(2): 31−35,49. doi: 10.3969/j.issn.1003-0174.2020.02.007
    [27]
    白凌曦. 不同改性方式对藜麦淀粉物性的影响[D]. 太原:山西农业大学, 2021. [BAI L X. Effects of different modification methods on physical properties of quinoa starch[D]. Taiyuan:Shanxi Agricultural University, 2021.]

    BAI L X. Effects of different modification methods on physical properties of quinoa starch[D]. Taiyuan: Shanxi Agricultural University, 2021.
    [28]
    陈瑾, 何大伟, 陈玲. 湿热处理环境下咖啡酸/绿原酸对板栗淀粉消化和回生性能的影响[J]. 华南理工大学学报(自然科学版),2022,50(8):41−48. [CHEN J, HE D W, CHEN L. Effect of caffeic acid/chlorogenic acid on digestion and retrogradation properties of chestnut starch under heat-moisture treatment[J]. Journal of South China University of Technology (Natural Science Edition),2022,50(8):41−48.]

    CHEN J, HE D W, CHEN L. Effect of caffeic acid/chlorogenic acid on digestion and retrogradation properties of chestnut starch under heat-moisture treatment[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(8): 41−48.
    [29]
    迟治平, 刁静静, 张丽萍, 等. 微波改性对高粱抗性淀粉结构和理化特性的影响[J]. 中国食品添加剂,2018(9):158−163. [CHI Z P, DIAO J J, ZHANG L P, et al. Effects of microwave modification on structure and physicochemical properties of sorghum resistant starch[J]. China Food Additives,2018(9):158−163.] doi: 10.3969/j.issn.1006-2513.2018.09.017

    CHI Z P, DIAO J J, ZHANG L P, et al. Effects of microwave modification on structure and physicochemical properties of sorghum resistant starch[J]. China Food Additives, 2018(9): 158−163. doi: 10.3969/j.issn.1006-2513.2018.09.017
    [30]
    丁欣欣, 范欣, 蔡启玲, 等. 瓜尔豆胶对发酵小麦淀粉结构和理化性质的影响[J]. 食品科学,2023,44(8):86−92. [DING X X, FAN X, CAI Q L, et al. Effect of guar gum on structure and physicochemical properties of fermented wheat starch[J]. Food Science,2023,44(8):86−92.] doi: 10.7506/spkx1002-6630-20220712-132

    DING X X, FAN X, CAI Q L, et al. Effect of guar gum on structure and physicochemical properties of fermented wheat starch[J]. Food Science, 2023, 44(8): 86−92. doi: 10.7506/spkx1002-6630-20220712-132
    [31]
    ELAHE A, KIANA P, MASTANEH J, et al. The effect of ultrasonic probe size for effective ultrasound-assisted pregelatinized starch[J]. Food and Bioprocess Technology,2019,12(11):1852−1862. doi: 10.1007/s11947-019-02347-2

Catalog

    Article Metrics

    Article views (28) PDF downloads (6) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return