Citation: | FEI Zhigen, GUO Xing, SONG Xiaoxiao, et al. Surface Defect Detection of Frozen Dumplings Based on Improved RetinaNet Model[J]. Science and Technology of Food Industry, 2025, 46(6): 9−19. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040041. |
[1] |
李桂玉, 许秀峰. 影响速冻水饺冻裂因素分析及改进措施[J]. 食品科技,2004,30(3):46−47. [LI G Y, XU X F. Factors of deep-frozen dumpling crackle analysis and prevention[J]. Food Science and Technology,2004,30(3):46−47.] doi: 10.3969/j.issn.1005-9989.2004.03.016
LI G Y, XU X F. Factors of deep-frozen dumpling crackle analysis and prevention[J]. Food Science and Technology, 2004, 30(3): 46−47. doi: 10.3969/j.issn.1005-9989.2004.03.016
|
[2] |
梁灵, 张正茂, 张艳东, 等. 大豆蛋白对速冻水饺质量的影响[J]. 西北农林科技大学学报(自然科学版),2006,71(10):153−158. [LIANG L, ZHANG Z M, ZHANG Y D, et al. Effect of soybean protein on the quality of the frozen dumpling[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition),2006,71(10):153−158.] doi: 10.3321/j.issn:1671-9387.2006.10.031
LIANG L, ZHANG Z M, ZHANG Y D, et al. Effect of soybean protein on the quality of the frozen dumpling[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry(Natural Science Edition), 2006, 71(10): 153−158. doi: 10.3321/j.issn:1671-9387.2006.10.031
|
[3] |
YANG F, KIM Y. Application of yuba film as frozen dumpling wrappers[J]. LWT - Food Science & Technology,2021,151(7):112245.
|
[4] |
周雨帆, 李胜旺, 杨奎河, 等. 基于轻量级卷积神经网络的苹果表面缺陷检测方法[J]. 河北工业科技,2021,38(5):388−394. [ZHOU Y F, LI S W, YANG K H, et al. Apple surface defect detection method based on lightweight convolutional neural network[J]. Hebei Industrial Science and Technology,2021,38(5):388−394.] doi: 10.7535/hbgykj.2021yx05006
ZHOU Y F, LI S W, YANG K H, et al. Apple surface defect detection method based on lightweight convolutional neural network[J]. Hebei Industrial Science and Technology, 2021, 38(5): 388−394. doi: 10.7535/hbgykj.2021yx05006
|
[5] |
LI Y D, XUE J X, WANG K, et al. Surface defect detection of fresh-cut cauliflowers based on convolutional neural network with transfer learning[J]. Foods,2022,11(18):2915. doi: 10.3390/foods11182915
|
[6] |
贾鹤鸣, 郎春博, 姜子超. 基于轻量级卷积神经网络的植物叶片病害识别方法[J]. 计算机应用,2021,41(6):1812−1819. [JIA H M, LANG C B, JIANG Z C. Plant leaf disease identification method based on lightweight convolutional neural network[J]. Journal of Computer Applications,2021,41(6):1812−1819.] doi: 10.11772/j.issn.1001-9081.2020091471
JIA H M, LANG C B, JIANG Z C. Plant leaf disease identification method based on lightweight convolutional neural network[J]. Journal of Computer Applications, 2021, 41(6): 1812−1819. doi: 10.11772/j.issn.1001-9081.2020091471
|
[7] |
刘一阳, 马子领. 基于机器学习的速冻水饺缺陷检测[J]. 现代计算机, 2023, 29(24):1−9, 39. [LIU Y Y, MA Z L. Defect detection of quick-frozen dumplings based on Machine learning[J]. Modern Computer, 2019, 29(24):1−9, 39.]
LIU Y Y, MA Z L. Defect detection of quick-frozen dumplings based on Machine learning[J]. Modern Computer, 2019, 29(24): 1−9, 39.
|
[8] |
周春欣, 霍怡之, 杜有海, 等. 基于改进的RetinaNet大豆外观品质无损检测[J]. 中国粮油学报,2024,39(9):172−180. [ZHOU C X, HUO Y Z, DU Y H, et al. Nondestructive testing of soybean appearance quality based on improved RetinaNet[J]. Chinese Journal of Cereals and Oils,2024,39(9):172−180.]
ZHOU C X, HUO Y Z, DU Y H, et al. Nondestructive testing of soybean appearance quality based on improved RetinaNet[J]. Chinese Journal of Cereals and Oils, 2024, 39(9): 172−180.
|
[9] |
李培婷. 基于深度学习的速冻水饺表面缺陷检测算法研究[D]. 郑州:郑州轻工业大学, 2023. [LI P T. Research on surface defect detection algorithm of quick-frozen dumplings based on deep learning[D]. Zhengzhou:Zhengzhou University of Light Industry, 2023.]
LI P T. Research on surface defect detection algorithm of quick-frozen dumplings based on deep learning[D]. Zhengzhou: Zhengzhou University of Light Industry, 2023.
|
[10] |
LI Y, WANG H N, FANG Y Q, et al. Learning power Gaussian modeling loss for dense rotated object detection in remote sensing images[J]. Chinese Journal of Aeronautics,2023,36(10):353−365. doi: 10.1016/j.cja.2023.04.022
|
[11] |
张银萍, 徐燕, 朱双杰, 等. 基于机器视觉的金丝皇菊智能分级系统研究[J]. 食品工业科技,2022,43(5):13−20. [ZHANG Y P, XU Y, ZHU S J, et al. Research on intelligent grading system of golden silk chrysanthemum based on machine vision[J]. Science and Technology of Food Industry,2022,43(5):13−20.]
ZHANG Y P, XU Y, ZHU S J, et al. Research on intelligent grading system of golden silk chrysanthemum based on machine vision[J]. Science and Technology of Food Industry, 2022, 43(5): 13−20.
|
[12] |
BAE W, YOO J, YE J C. Beyond deep residual learning for image restoration:persistent homology-guided manifold simplification[J]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, HI, USA:2017:1141−1149.
|
[13] |
GONG Y Q, YU X H, DING Y, et al. Effective fusion factor in FPN for tiny object detection[C]// 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA:2021:1159−1167.
|
[14] |
YOGESH, DUBEY A K, RATAN R, et al. Computer vision based analysis and detection of defects in fruits causes due to nutrients deficiency[J]. Cluster Computing, 2020, 23(1):1817–1826.
|
[15] |
张志刚, 余鹏飞, 李海燕, 等. 基于多尺度特征引导的细粒度野生菌图像识别[J]. 激光与光电子学进展,2022,59(12):10. [ZHANG Z G, YU P F, LI H Y, et al. Fine-grained wild mushroom image recognition based on multi-scale feature guidance[J]. Advances in Laser and Optoelectronics,2022,59(12):10.]
ZHANG Z G, YU P F, LI H Y, et al. Fine-grained wild mushroom image recognition based on multi-scale feature guidance[J]. Advances in Laser and Optoelectronics, 2022, 59(12): 10.
|
[16] |
BAO W X, FAN T, HU G S, et al. Detection and identification of tea leaf diseases based on AX-RetinaNet[J]. Scientific Reports,2022,12(1):1−16. doi: 10.1038/s41598-021-99269-x
|
[17] |
TIAN Z, SHEN C H, CHEN H, et al. FCOS:A simple and strong anchor-free object detector[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020:1922−1933.
|
[18] |
金山峰, 王冬欣, 黄俊仕, 等. 基于计算机视觉的茶叶品质在线评价系统[J]. 食品工业科技,2021,42(14):219−225. [JIN S F, WANG D X, HUANG J S, et al. Online evaluation system for tea quality based on computer vision[J]. Science and Technology of Food Industry,2021,42(14):219−225.]
JIN S F, WANG D X, HUANG J S, et al. Online evaluation system for tea quality based on computer vision[J]. Science and Technology of Food Industry, 2021, 42(14): 219−225.
|
[19] |
刘海文, 郑元林, 钟崇军, 等. 基于改进YOLOv5l的印刷品缺陷检测[J]. 激光与光电子学进展,2019,61(10):228−235. [LIU H W, ZHENG Y L, ZHONG C J, et al. Print defect detection based on improved YOLOv5l[J]. Advances in Laser and Optoelectronics,2019,61(10):228−235.]
LIU H W, ZHENG Y L, ZHONG C J, et al. Print defect detection based on improved YOLOv5l[J]. Advances in Laser and Optoelectronics, 2019, 61(10): 228−235.
|
[20] |
李雪露, 储茂祥, 杨永辉, 等. 基于CR-RFPR101的钢板表面缺陷检测[J]. 合肥工业大学学报(自然科学版),2023,46(12):1651−1658. [LI X L, CHU M X, YANG Y H, et al. Surface defect detection of steel plate based on CR-RFPR101[J]. Journal of Hefei University of Technology (Natural Science Edition),2023,46(12):1651−1658.] doi: 10.3969/j.issn.1003-5060.2023.12.010
LI X L, CHU M X, YANG Y H, et al. Surface defect detection of steel plate based on CR-RFPR101[J]. Journal of Hefei University of Technology (Natural Science Edition), 2023, 46(12): 1651−1658. doi: 10.3969/j.issn.1003-5060.2023.12.010
|
[21] |
TETILA E, MACHADO B B, ASTOLFI G, et al. Detection and classification of soybean pests using deep learning with UAV images[J]. Computers and Electronics in Agriculture,2020,179(1):105836.
|
[22] |
TAN L, HUANGFU T R, WU L Y, et al. Comparison of RetinaNet, SSD, and YOLO v3 for real-time pill identification[J]. BMC Medical Informatics and Decision Making,2021,21(1):1−11. doi: 10.1186/s12911-020-01362-0
|
[23] |
YANG J F, FU X Y, HU Y W, et al. PanNet:A deep network architecture for Pan-Sharpening[J]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017:1753−1761.
|
[24] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[J] 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017:936−944.
|
[25] |
ZHANG J, KARKEE M, ZHANG Q, et al. Multi-class object detection using faster R-CNN and estimation of shaking locations for automated shake-and-catch apple harvesting[J]. Computers and Electronics in Agriculture, 2020:173.
|
[26] |
HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. in IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(8):2011−2023. doi: 10.1109/TPAMI.2019.2913372
|
[27] |
裴悦琨, 刘敬宇. 基于改进YOLOX模型的樱桃缺陷及分级检测方法[J]. 食品与机械,2023,39(1):7. [PEI Y K, LIU J Y. Cherry defect and grading detection method based on improved YOLOX model[J]. Food and Machinery,2023,39(1):7.]
PEI Y K, LIU J Y. Cherry defect and grading detection method based on improved YOLOX model[J]. Food and Machinery, 2023, 39(1): 7.
|
[28] |
CAO L, YANG J Y, RONG Z W, et al. A novel attention-guided convolutional network for the detection of abnormal cervical cells in cervical cancer screening[J]. Medical Image Analysis,2021,73(4):102197.
|
[29] |
WOO S, PARK J, LEE J Y, et al. CBAM:Convolutional block attention module[J]. Lecture Notes in Computer Science, 2018:3–19.
|
[30] |
ZHANG Z, LU Y Z, LU R F. Development and evaluation of an apple infield grading and sorting system[J]. Postharvest Biology and Technology,2021,180:111588. doi: 10.1016/j.postharvbio.2021.111588
|
[31] |
谢安国, 纪思媛, 李月玲, 等. 基于遗传算法和深度神经网络的近红外高光谱检测猪肉新鲜度[J]. 食品工业科技,2024,45(17):1−7. [XIE A G, JI S Y, LI Y L, et al. Detection of pork freshness using NIR hyperspectral Imaging based on genetic algorithm and deep neural network[J]. Science and Technology of Food Industry,2024,45(17):1−7.]
XIE A G, JI S Y, LI Y L, et al. Detection of pork freshness using NIR hyperspectral Imaging based on genetic algorithm and deep neural network[J]. Science and Technology of Food Industry, 2024, 45(17): 1−7.
|
[32] |
章曙光, 张文韬, 刘洋, 等. 改进MobileNet-SSD的电梯内电动车识别方法[J]. 机械设计与制造,2024(9):340−345. [ZHANG S G, ZHANG W T, LIU Y, et al. Improving the identification method of electric vehicles in elevators with MobileNet-SSD[J]. Mechanical Design and Manufacturing,2024(9):340−345.] doi: 10.3969/j.issn.1001-3997.2024.09.065
ZHANG S G, ZHANG W T, LIU Y, et al. Improving the identification method of electric vehicles in elevators with MobileNet-SSD[J]. Mechanical Design and Manufacturing, 2024(9): 340−345. doi: 10.3969/j.issn.1001-3997.2024.09.065
|
[33] |
ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5:Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Canada:Montreal, BC, 2021:2778−2788.
|
[34] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4:Optimal speed and accuracy of object detection[J]. In ArXiv, 2020:2004.10934.
|
[35] |
CHEN X, GUPTA A. An implementation of Faster RCNN with study for region sampling[J]. In ArXiv, 2017:1702.02138.
|
[36] |
DING R W, DAI L H, LI G P, et al. TDD-Net:A Tiny defect detection network for printed circuit boards[J]. CAAI Transactions on Intelligence Technology,2019,4(2):110−116. doi: 10.1049/trit.2019.0019
|