Citation: | LIU Mengyu, HE Hailin, MA Ting, et al. Progress on Synthetic Biology For Steviol Glycosides Biosynthesis[J]. Science and Technology of Food Industry, 2025, 46(6): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030397. |
[1] |
CASTRO-MUÑOZ R, CORREA-DELGADO M, CÓRDOVA-ALMEIDA R, et al. Natural sweeteners:Sources, extraction and current uses in foods and food industries[J]. Food Chemistry,2022,370:130991. doi: 10.1016/j.foodchem.2021.130991
|
[2] |
ZHOU X, GONG M Y, LÜ X Q, et al. Metabolic engineering for the synthesis of steviol glycosides:Current status and future prospects[J]. Applied Microbiology and Biotechnology,2021,105(13):5367−5381. doi: 10.1007/s00253-021-11419-3
|
[3] |
PERRIER D J, MIHALOV J J, CARLSON J S. FDA regulatory approach to steviol glycosides[J]. Food and Chemical Toxicology,2018,122:132−142. doi: 10.1016/j.fct.2018.09.062
|
[4] |
LI M T, TAN H E, LU Z Y, et al. Gut–brain circuits for fat preference[J]. Nature,2022,610:722−730. doi: 10.1038/s41586-022-05266-z
|
[5] |
BUCHANAN K L, RUPPRECHT L E, KAELBERER M M, et al. The preference for sugar over sweetener depends on a gut sensor cell[J]. Nature Neuroscience,2022,25:191−200. doi: 10.1038/s41593-021-00982-7
|
[6] |
RINNINELLA E, CINTONI M, RAOUL P, et al. Food additives, gut microbiota, and irritable bowel syndrome:A hidden track[J]. International Journal of Environmental Research and Public Health,2020,17(23):8816. doi: 10.3390/ijerph17238816
|
[7] |
SCHWARZ A, HERNANDEZ L, AREFIN S, et al. Sweet, bloody consumption–what we eat and how it affects vascular ageing, the BBB and kidney health in CKD[J]. Gut Microbes,2024,16(1):2341449. doi: 10.1080/19490976.2024.2341449
|
[8] |
SARAIVA A, CARRASCOSA C, RAHEEM D, et al. Natural Sweeteners:The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts[J]. International Journal of Environmental Research and Public Health,2020,17(17):6285. doi: 10.3390/ijerph17176285
|
[9] |
CIRIMINNA R, MENEGUZZO F, PECORAINO M, et al. A bioeconomy perspective for natural sweetener Stevia[J]. Biofuels, Bioproducts and Biorefining,2019,13(3):445−452. doi: 10.1002/bbb.1968
|
[10] |
SALEHI B, LÓPEZ M D, MARTÍNEZ-LÓPEZ S, et al. Stevia rebaudiana Bertoni bioactive effects:From in vivo to clinical trials towards future therapeutic approaches[J]. Phytotherapy Research:PTR,2019,33(11):2904−2917. doi: 10.1002/ptr.6478
|
[11] |
ABDULHAFIZ F, MOHAMMED A, REDUAN M F H, et al. Plant cell culture technologies:A promising alternatives to produce high-value secondary metabolites[J]. Arabian Journal of Chemistry,2022,15(11):104161. doi: 10.1016/j.arabjc.2022.104161
|
[12] |
MOZEJKO-CIESIELSKA J, SERAFIM L S. Recent progress and challenges in synthetic biology for improving microbial production of biopolymers[J]. Microbiological Research,2023,275:127463. doi: 10.1016/j.micres.2023.127463
|
[13] |
WANG J F, LI S Y, XIONG Z Q, et al. Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli[J]. Cell Research,2016,26(2):258−261. doi: 10.1038/cr.2015.111
|
[14] |
韩羽彤. 甜菊糖苷的性质、提取、分离与结构鉴定研究现状[J]. 现代食品,2023,29(7):39−41. [HAN Y T. Current status of research on the properties, extraction, separation and structure identification of stevioside[J]. Modern Food,2023,29(7):39−41.]
HAN Y T. Current status of research on the properties, extraction, separation and structure identification of stevioside[J]. Modern Food, 2023, 29(7): 39−41.
|
[15] |
HUANG C X, WANG Y, ZHOU C S, et al. Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides:A review[J]. Food Chemistry,2024,453:139622. doi: 10.1016/j.foodchem.2024.139622
|
[16] |
CHATSUDTHIPONG V, MUANPRASAT C. Stevioside and related compounds:Therapeutic benefits beyond sweetness[J]. Pharmacology Therapeutics,2009,121(1):41−54. doi: 10.1016/j.pharmthera.2008.09.007
|
[17] |
YANG Y Y, XU M Y, WAN Z L, et al. Novel functional properties and applications of steviol glycosides in foods[J]. Current Opinion in Food Science,2021,43:91−98.
|
[18] |
YOUNES M, AGGETT P, AGUILAR F, et al. Safety evaluation of glucosylated steviol glycosides as a food additive in different food categories[J]. EFSA Journal, 2022, 16(2): e07066.
|
[19] |
CASTRO-MUÑOZ R, DÍAZ-MONTES E, CASSANO A, et al. Membrane separation processes for the extraction and purification of steviol glycosides:An overview[J]. Critical Reviews in Food Science and Nutrition,2020,61(13):2152−2174.
|
[20] |
AHMAD J, KHAN I, BLUNDELL R, et al. Stevia rebaudiana Bertoni:An updated review of its health benefits, industrial applications and safety[J]. Trends in Food Science & Technology,2020,100:177−189.
|
[21] |
TIAN X Y, ZHONG F, XIA Y X. Dynamic characteristics of sweetness and bitterness and their correlation with chemical structures for six steviol glycosides[J]. Food Research International,2021,151:110848.
|
[22] |
郭保党, 饶义剑. 新型甜味剂莱鲍迪苷D和莱鲍迪苷M的生物转化进展[J]. 食品与发酵工业,2023,49(7):289−296. [GUO B D, RAO Y J. Current advances in the biotransformation of new type sweeteners Rebaudioside D and Rebaudioside M[J]. Food and Fermentation Industries,2023,49(7):289−296.]
GUO B D, RAO Y J. Current advances in the biotransformation of new type sweeteners Rebaudioside D and Rebaudioside M[J]. Food and Fermentation Industries, 2023, 49(7): 289−296.
|
[23] |
TAO R, CHO S. Consumer-Based Sensory Characterization of Steviol Glycosides (Rebaudioside A, D, and M)[J]. Foods,2020,9(8):10226.
|
[24] |
ORELLANA-PAUCAR A M. Steviol glycosides from stevia rebaudiana:An updated overview of their sweetening activity, pharmacological properties, and safety aspects[J]. Molecules,2323,28(3):1258.
|
[25] |
陈俊名. 甜菊糖苷的体外代谢及生物活性研究[D]. 无锡:江南大学, 2019. [CHEN J M. In vitro metabolism and biological activity of the steviol glycosides[D]. Wuxi:Jiangnan University, 2019.]
CHEN J M. In vitro metabolism and biological activity of the steviol glycosides[D]. Wuxi: Jiangnan University, 2019.
|
[26] |
KUREK J M, KRÓL E, KREJPCIO Z. Steviol glycosides supplementation affects lipid metabolism in high-fat fed STZ-induced diabetic rats[J]. Nutrients,2020,13(1):112.1.
|
[27] |
DYRSKOG S E U, JEPPESEN P B, CHEN J, et al. The diterpene glycoside, rebaudioside A, does not improve glycemic control or affect blood pressure after eight weeks treatment in the Goto-Kakizaki rat[J]. The Review of Diabetic Studies,2005,2(2):84−91. doi: 10.1900/RDS.2005.2.84
|
[28] |
LAILERD N, SAENGSIRISUWAN V, SLONIGER J A, et al. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle[J]. Metabolism,2004,53(1):101−107. doi: 10.1016/j.metabol.2003.07.014
|
[29] |
YASUKAWA K, KITANAKA S, SEO S. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin[J]. Biological and Pharmaceutical Bulletin,2002,25(11):1488. doi: 10.1248/bpb.25.1488
|
[30] |
VELESIOTIS C, KANELLAKIS M, VYNIOS D H. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells[J]. IUBMB Life,2022,74(10):1012−1028. doi: 10.1002/iub.2669
|
[31] |
CHEN J M, XIA Y M, SUI X C, et al. Steviol, a natural product inhibits proliferation of the gastrointestinal cancer cells intensively[J]. Oncotarget,2018,9(41):26299−26308. doi: 10.18632/oncotarget.25233
|
[32] |
CHEN J W, HOU K, QIN P, et al. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes[J]. BMC Genomics,2014,15(1):571. doi: 10.1186/1471-2164-15-571
|
[33] |
HUANG Y, XIE F J, CAO X, et al. Research progress in biosynthesis and regulation of plant terpenoids[J]. Biotechnology & Biotechnological Equipment,2022,35(1):1800−1809.
|
[34] |
VOLKE D C, ROHWER J, FISCHER R, et al. Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis[J]. Microbial Cell Factories,2019,18(1):192. doi: 10.1186/s12934-019-1235-5
|
[35] |
KUMAR H, SINGH K, KUMAR S. 2C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase from Stevia rebaudiana Bertoni is a functional gene[J]. Molecular Biology Reports,2012,39(12):10971−10978. doi: 10.1007/s11033-012-1998-9
|
[36] |
FRANK A, GROLL M. The methylerythritol phosphate pathway to isoprenoids[J]. Chemical Reviews,2017,117(8):5675−5703. doi: 10.1021/acs.chemrev.6b00537
|
[37] |
KWON M, SHIN B K, LEE J, et al. Characterization of Burkholderia glumae BGR1 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), the terminal enzyme in 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway[J]. Applied Biological Chemistry,2013,56(1):35−40.
|
[38] |
NETI S S, PAN J J, POULTER C D. Mechanistic studies of the protonation-deprotonation reactions for type 1 and type 2 isopentenyl diphosphate:Dimethylallyl diphosphate isomerase[J]. Journal of the American Chemical Society,2018,140(40):12900−12908. doi: 10.1021/jacs.8b07274
|
[39] |
YOU M K, LEE Y J, KIM J K, et al. The organ-specific differential roles of rice DXS and DXR, the first two enzymes of the MEP pathway, in carotenoid metabolism in Oryza sativa leaves and seeds[J]. BMC Plant Biology,2020,20(1):167. doi: 10.1186/s12870-020-02357-9
|
[40] |
WANG Q, QUAN S, XIAO H. Towards efficient terpenoid biosynthesis:manipulating IPP and DMAPP supply[J]. Bioresources and Bioprocessing,2019,6:6. doi: 10.1186/s40643-019-0242-z
|
[41] |
ZHENG J S, ZHUANG Y, MAO H Z, et al. Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants[J]. BMC Plant Biology,2019,19(1):1. doi: 10.1186/s12870-018-1600-2
|
[42] |
BISWAS P, KUMARI A, MODI A, et al. Improvement and regulation of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni[J]. Gene,2023,891:147809.
|
[43] |
TOTTÉ N, CHARON L, ROHMER M, et al. Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway[J]. Tetrahedron Letters,2000,41:6407−6410. doi: 10.1016/S0040-4039(00)01094-7
|
[44] |
GOLD N D, ELENA F, HANSEN C C, et al. A combinatorial approach to study cytochrome P450 enzymes for De Novo production of steviol glucosides in baker's yeast[J]. ACS Synthetic Biology,2018,7(12):2918−2929. doi: 10.1021/acssynbio.8b00470
|
[45] |
KNAUER J F, SCHULZ C, ZEMELLA A, et al. Synthesis of mono Cytochrome P450 in a modified CHO-CPR cell-free protein production platform[J]. Scientific Reports,2024,14(1):1271. doi: 10.1038/s41598-024-51781-6
|
[46] |
LIBIK-KONIECZNY M, MICHALEC-WARZECHA A, DZIURKA M, et al. Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions[J]. Applied Microbiology and Biotechnology,2020,104(13):5929−5941. doi: 10.1007/s00253-020-10661-5
|
[47] |
CEUNEN S, GEUNS J M C. Steviol glycosides:Chemical diversity, metabolism, and function[J]. Journal of Natural Products,2013,76(6):1201−1028. doi: 10.1021/np400203b
|
[48] |
李亚桐, 马媛媛, 汪振洋, 等. 甜菊糖苷的应用及生物合成研究进展[J]. 中国生物工程杂志,2023,43(1):104−114. [LI Y T, MA Y Y, WANG Z Y, et al. Research progress of application and biosynthesis of steviol glycosides[J]. China Biotechnology,2023,43(1):104−114.]
LI Y T, MA Y Y, WANG Z Y, et al. Research progress of application and biosynthesis of steviol glycosides[J]. China Biotechnology, 2023, 43(1): 104−114.
|
[49] |
OLSSON K, CARLSEN S, SEMMLER A, et al. Microbial production of next-generation stevia sweeteners[J]. Microbial Cell Factories,2016,15:207. doi: 10.1186/s12934-016-0609-1
|
[50] |
刘啸尘, 刘护, 张良, 等. 细胞代谢过程中的酶促糖基化及其功能[J]. 中国生物工程杂志,2018,38(1):69−77. [LIU X C, LIU H, ZHANG L, et al. Enzymatic glycosylation and its function in metabolic process of cells[J]. Chinese Biotechnology,2018,38(1):69−77.]
LIU X C, LIU H, ZHANG L, et al. Enzymatic glycosylation and its function in metabolic process of cells[J]. Chinese Biotechnology, 2018, 38(1): 69−77.
|
[51] |
RAHIMI S, KIM J, MIJAKOVIC I, et al. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants[J]. Biotechnology Advances,2019,37(7):107394. doi: 10.1016/j.biotechadv.2019.04.016
|
[52] |
OSMANI S A, BAK S, MØLLER B L. ChemInform abstract:Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling[J]. ChemInform,2009,70(3):325−347.
|
[53] |
MOHAMED A A A, CEUNEN S, GEUNS J M C, et al. UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides[J]. Journal of Plant Physiology,2011,168(10):1136−1141. doi: 10.1016/j.jplph.2011.01.030
|
[54] |
WU Q, CHRISTOPHE H L, HAN-YI C, et al. An efficient stevia rebaudiana transformation system and in vitro enzyme assays reveal novel insights into UGT76G1 Function[J]. Scientific reports,2020,10(1):3773. doi: 10.1038/s41598-020-60776-y
|
[55] |
LIBIK-KONIECZNY M, CAPECKA E, TULEJA M, et al. Synthesis and production of steviol glycosides:Recent research trends and perspectives[J] Applied Microbiology and Biotechnology, 2021, 105(10):3883-3900.
|
[56] |
LIN Y, WEN M M, LAN Q, et al. A strategy to increase rebaudioside A content based on one-step bioconversion of Stevia extract to steviol[J]. Green Chemistry,2023,8:3214−3222.
|
[57] |
ZHANG R Q, TANG R Q, BI J H, et al. Efficient bioconversion of stevioside and rebaudioside a to glucosylated steviol glycosides using an Alkalihalobacillus oshimesis-derived cyclodextrin glucanotransferase[J]. Molecules,2023,28(3):1245. doi: 10.3390/molecules28031245
|
[58] |
YANG T, ZHANG J Z, KE D, et al. Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations[J]. Nature Communications,2019,10(1):1−12. doi: 10.1038/s41467-018-07882-8
|
[59] |
LIU Z F, LI J X, SUN Y W, et al. Structural insights into the catalytic mechanism of a plant diterpene glycosyltransferase SrUGT76G1[J]. Plant Communications,2020,1(1):100004. doi: 10.1016/j.xplc.2019.100004
|
[60] |
ZHANG S S, YAN Y S, LYU C C, et al. Identification of the Key Residues of the Uridine Diphosphate Glycosyltransferase 91D2 and its Effect on the Accumulation of Steviol Glycosides in Stevia rebaudiana[J]. Journal of Agricultural and Food Chemistry,2021,69(6):1852−1863. doi: 10.1021/acs.jafc.0c07066
|
[61] |
ZHANG J Z, TANG M H, CHEN Y J, et al. Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides[J]. Nature Communications,2021,12(1):7030. doi: 10.1038/s41467-021-27144-4
|
[62] |
BRANDLE J, TELMER P. Steviol glycoside biosynthesis[J]. Phytochemistry,2007,68(14):1855−1863. doi: 10.1016/j.phytochem.2007.02.010
|
[63] |
王蓓蓓. 甜叶菊UGT76G1在毕赤酵母细胞的表面展示[D]. 广州:华南理工大学, 2014. [WANG B B. Cell-surface display of UGT76G1 from Stevia rebaudiana in Pichia pastoris[D]. Guangzhou:South China University of Technology, 2014.]
WANG B B. Cell-surface display of UGT76G1 from Stevia rebaudiana in Pichia pastoris[D]. Guangzhou: South China University of Technology, 2014.
|
[64] |
KIM M J, ZHENG J, MING H, et al. Overexpression of SrUGT76G1 in Stevia alters major steviol glycosides composition towards improved quality[J]. Plant Biotechnology Journal,2019,17(6):1037−1047. doi: 10.1111/pbi.13035
|
[65] |
YONEDA Y, SHIMIZU H, NAKASHIMA H, et al. Effect of treatment with gibberellin, gibberellin biosynthesis inhibitor, and auxin on steviol glycoside content in stevia rebaudiana Bertoni[J]. Sugar Tech,2017,20(4):482−491.
|
[66] |
GERWIG G J, TE POELE E M, DIJKHUIZEN L, et al. Stevia Glycosides:Chemical and enzymatic modifications of their carbohydrate moieties to improve the sweet-tasting quality[J]. Advances in Carbohydrate Chemistry and Biochemistry,2016,73:1−72.
|
[67] |
李铭敏, 郑仁朝, 郑裕国. 甜菊糖苷的生物合成途径与生物转化制备策略的研究概述[J]. 食品与发酵工业,2015,41(9):236−242. [LI M M, ZHENG R C, ZHENG Y G. Study of steviol glycosides biosynthesis pathway and the advances in its bioconversion strategies[J]. Food and Fermentation Industries,2015,41(9):236−242.]
LI M M, ZHENG R C, ZHENG Y G. Study of steviol glycosides biosynthesis pathway and the advances in its bioconversion strategies[J]. Food and Fermentation Industries, 2015, 41(9): 236−242.
|
[68] |
史石磊. 甜菊糖苷提取工艺进展[J]. 食品工业,2023,44(6):157−159. [SHI S L. Progress in steviol glycoside extraction process[J]. The Food Industry,2023,44(6):157−159.]
SHI S L. Progress in steviol glycoside extraction process[J]. The Food Industry, 2023, 44(6): 157−159.
|
[69] |
CHEN M Q, ZENG X A, ZHU Q Q, et al. Effective synthesis of rebaudioside a by whole-cell biocatalyst Pichia pastoris[J]. Biochemical Engineering Journal,2021,175:108117. doi: 10.1016/j.bej.2021.108117
|
[70] |
CZINKÓCZKY R, NÉMETH A. Enrichment of the rebaudioside A concentration in Stevia rebaudiana extract with cyclodextrin glycosyltransferase from Bacillus licheniformis DSM 13[J]. Engineering in Life Sciences,2021,22(1):30−39.
|
[71] |
YANG S, HOU X, DENG Z W, et al. Improving the thermostability of glycosyltransferase YojK by targeting mutagenesis for highly efficient biosynthesis of rebaudioside D[J]. Molecular Catalysis,2023,535:112898. doi: 10.1016/j.mcat.2022.112898
|
[72] |
WANG Z Y, HONG J F, MA S Y, et al. Heterologous expression of EUGT11 from Oryza sativa in Pichia pastoris for highly efficient one-pot production of rebaudioside D from rebaudioside A[J]. International Journal of Biological Macromolecules,2020,163:1669−1676. doi: 10.1016/j.ijbiomac.2020.09.132
|
[73] |
CHEN L L, PAN H Y, CAI R X, et al. Bioconversion of stevioside to rebaudioside E using glycosyltransferase UGTSL2[J]. Applied Biochemistry and Biotechnology,2020,193(3):637−649.
|
[74] |
CHEN L L, SUN P, ZHOU F F, et al. Synthesis of rebaudioside D, using glycosyltransferase UGTSL2 and in situ UDP-glucose regeneration[J]. Food Chemistry,2018,259:286−291. doi: 10.1016/j.foodchem.2018.03.126
|
[75] |
CHEN L L, CAI R X, WENG J Y, et al. Production of rebaudioside D from stevioside using a UGTSL2 Asn358Phe mutant in a multi-enzyme system[J]. Microbial BiBotechnology,2020,13(4):974−983. doi: 10.1111/1751-7915.13539
|
[76] |
宋浩, 汪振洋, 马媛媛, 等. 一种能够催化莱鲍迪苷A生成多种甜菊糖苷衍生物的糖基转移酶CaUGT:中国, 202111680606.0[P]. 2023-01-03. [SONG H, WANG Z Y, MA Y Y, et al. CaUGT, a glycosyltransferase capable of catalyzing the generation of multiple steviol glycoside derivatives from Leiboldin A:China, 202111680606.0[P]. 2023-01-03.]
SONG H, WANG Z Y, MA Y Y, et al. CaUGT, a glycosyltransferase capable of catalyzing the generation of multiple steviol glycoside derivatives from Leiboldin A: China, 202111680606.0[P]. 2023-01-03.
|
[77] |
SHU W J, ZHENG H C, FU X P, et al. Enhanced heterologous production of glycosyltransferase UGT76G1 by co-Expression of endogenous prpD and malK in Escherichia coli and its transglycosylation application in production of rebaudioside[J]. International Journal of Molecular Sciences,2020,21(16):5752. doi: 10.3390/ijms21165752
|
[78] |
马媛媛, 李亚桐, 魏晓珍, 等. 一种与特定短肽标签融合能高效催化Reb M生成的重组酶:中国, 202111481579.4[P]. 2022-03-18. [MA Y Y, LI Y T, WEI X Z, et al. A recombinant enzyme fused to a specific short peptide tag efficiently catalyzes Reb M generation:China, 202111481579.4[P]. 2022-03-18.]
MA Y Y, LI Y T, WEI X Z, et al. A recombinant enzyme fused to a specific short peptide tag efficiently catalyzes Reb M generation: China, 202111481579.4[P]. 2022-03-18.
|
[79] |
WANG Z Y, LIU W B, LIU W, et al. Co-immobilized recombinant glycosyltransferases efficiently convert rebaudioside A to M in cascade[J]. RSC Advances,2021,11(26):15785−15794. doi: 10.1039/D0RA10574K
|
[80] |
MOON J H, LEE K, LEE J H, et al. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli[J]. Microbial Cell Factories,2020,19(1):20. doi: 10.1186/s12934-020-1291-x
|
[81] |
KO S C, WOO H M. Biosynthesis of the calorie-free sweetener precursor ent-kaurenoic acid from CO2 using engineered Ccyanobacteria[J]. ACS Synthetic Biology , 2020:2979-2985 .
|
[82] |
LI Y, LI Y Y, WANG Y, et al. Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae[J]. Applied Biochemistry and Biotechnology,2016,178(8):1586−1598. doi: 10.1007/s12010-015-1969-4
|
[83] |
ZERVA A, CHOROZIAN K, KRITIKOU A S, et al. β-glucosidase and β-galactosidase-mediated transglycosylation of steviol glycosides utilizing industrial byproducts[J]. Front Bioeng Biotechnol,2021,9:685099. doi: 10.3389/fbioe.2021.685099
|
[84] |
SINGH A K, SINGH A, SINGH R, et al. Non-sugar sweeteners and health outcomes in adults without diabetes:Deciphering the WHO recommendations in the Indian context[J]. RSC Advances,2023,17(8):102829.
|
[85] |
XU Y M, WU Y K, LIU Y F, et al. Sustainable bioproduction of natural sugar substitutes:Strategies and challenges[J]. Trends in Food Science Technology,2022,129:512−527. doi: 10.1016/j.jpgs.2022.11.008
|