LIU Mengyu, HE Hailin, MA Ting, et al. Progress on Synthetic Biology For Steviol Glycosides Biosynthesis[J]. Science and Technology of Food Industry, 2025, 46(6): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030397.
Citation: LIU Mengyu, HE Hailin, MA Ting, et al. Progress on Synthetic Biology For Steviol Glycosides Biosynthesis[J]. Science and Technology of Food Industry, 2025, 46(6): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030397.

Progress on Synthetic Biology For Steviol Glycosides Biosynthesis

More Information
  • Received Date: March 25, 2024
  • Available Online: January 10, 2025
  • Stevioside, also known as stevia, is a class of diterpenoids extracted from stevia with high sweetness, low calories, safety and non-toxicity, hypoglycemic, hypotensive, and other physiological characteristics. It is regarded as the "world's third natural glycogen," and widely used in the food, pharmaceutical, daily-use chemicals, brewing, and other industries. However, extracts based on the traditional extraction process have [1]problems such as difficult purification, low extraction efficiency, and excessive consumption of solvents, which limit their value and application scope. The rapid development of synthetic biology provides a new green and efficient production mode for the production of plant-based natural products. To this end, the article reviews the research progress of steviol glycosides' biosynthesis based on the elucidation of their structure and physiological activities. It analyzes the biosynthetic pathways of steviol glycosides and the catalytic mechanisms of the key enzymes involved. The focus is on the mechanisms and approaches for biocatalytic synthesis using glycosyltransferases and the de novo synthesis of specific steviol glycosides by microorganisms. Additionally, it discusses the application of two biosynthetic methods in the production of high sweetness, low bitterness rebaudiosides A, D, and M. Based on the aforementioned research advances, the paper explores the main challenges currently faced in the biosynthesis of steviol glycosides and future research directions, aiming to provide theoretical insights for the biosynthesis of steviol glycosides.
  • loading
  • [1]
    CASTRO-MUÑOZ R, CORREA-DELGADO M, CÓRDOVA-ALMEIDA R, et al. Natural sweeteners:Sources, extraction and current uses in foods and food industries[J]. Food Chemistry,2022,370:130991. doi: 10.1016/j.foodchem.2021.130991
    [2]
    ZHOU X, GONG M Y, LÜ X Q, et al. Metabolic engineering for the synthesis of steviol glycosides:Current status and future prospects[J]. Applied Microbiology and Biotechnology,2021,105(13):5367−5381. doi: 10.1007/s00253-021-11419-3
    [3]
    PERRIER D J, MIHALOV J J, CARLSON J S. FDA regulatory approach to steviol glycosides[J]. Food and Chemical Toxicology,2018,122:132−142. doi: 10.1016/j.fct.2018.09.062
    [4]
    LI M T, TAN H E, LU Z Y, et al. Gut–brain circuits for fat preference[J]. Nature,2022,610:722−730. doi: 10.1038/s41586-022-05266-z
    [5]
    BUCHANAN K L, RUPPRECHT L E, KAELBERER M M, et al. The preference for sugar over sweetener depends on a gut sensor cell[J]. Nature Neuroscience,2022,25:191−200. doi: 10.1038/s41593-021-00982-7
    [6]
    RINNINELLA E, CINTONI M, RAOUL P, et al. Food additives, gut microbiota, and irritable bowel syndrome:A hidden track[J]. International Journal of Environmental Research and Public Health,2020,17(23):8816. doi: 10.3390/ijerph17238816
    [7]
    SCHWARZ A, HERNANDEZ L, AREFIN S, et al. Sweet, bloody consumption–what we eat and how it affects vascular ageing, the BBB and kidney health in CKD[J]. Gut Microbes,2024,16(1):2341449. doi: 10.1080/19490976.2024.2341449
    [8]
    SARAIVA A, CARRASCOSA C, RAHEEM D, et al. Natural Sweeteners:The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts[J]. International Journal of Environmental Research and Public Health,2020,17(17):6285. doi: 10.3390/ijerph17176285
    [9]
    CIRIMINNA R, MENEGUZZO F, PECORAINO M, et al. A bioeconomy perspective for natural sweetener Stevia[J]. Biofuels, Bioproducts and Biorefining,2019,13(3):445−452. doi: 10.1002/bbb.1968
    [10]
    SALEHI B, LÓPEZ M D, MARTÍNEZ-LÓPEZ S, et al. Stevia rebaudiana Bertoni bioactive effects:From in vivo to clinical trials towards future therapeutic approaches[J]. Phytotherapy Research:PTR,2019,33(11):2904−2917. doi: 10.1002/ptr.6478
    [11]
    ABDULHAFIZ F, MOHAMMED A, REDUAN M F H, et al. Plant cell culture technologies:A promising alternatives to produce high-value secondary metabolites[J]. Arabian Journal of Chemistry,2022,15(11):104161. doi: 10.1016/j.arabjc.2022.104161
    [12]
    MOZEJKO-CIESIELSKA J, SERAFIM L S. Recent progress and challenges in synthetic biology for improving microbial production of biopolymers[J]. Microbiological Research,2023,275:127463. doi: 10.1016/j.micres.2023.127463
    [13]
    WANG J F, LI S Y, XIONG Z Q, et al. Pathway mining-based integration of critical enzyme parts for de novo biosynthesis of steviolglycosides sweetener in Escherichia coli[J]. Cell Research,2016,26(2):258−261. doi: 10.1038/cr.2015.111
    [14]
    韩羽彤. 甜菊糖苷的性质、提取、分离与结构鉴定研究现状[J]. 现代食品,2023,29(7):39−41. [HAN Y T. Current status of research on the properties, extraction, separation and structure identification of stevioside[J]. Modern Food,2023,29(7):39−41.]

    HAN Y T. Current status of research on the properties, extraction, separation and structure identification of stevioside[J]. Modern Food, 2023, 29(7): 39−41.
    [15]
    HUANG C X, WANG Y, ZHOU C S, et al. Properties, extraction and purification technologies of Stevia rebaudiana steviol glycosides:A review[J]. Food Chemistry,2024,453:139622. doi: 10.1016/j.foodchem.2024.139622
    [16]
    CHATSUDTHIPONG V, MUANPRASAT C. Stevioside and related compounds:Therapeutic benefits beyond sweetness[J]. Pharmacology Therapeutics,2009,121(1):41−54. doi: 10.1016/j.pharmthera.2008.09.007
    [17]
    YANG Y Y, XU M Y, WAN Z L, et al. Novel functional properties and applications of steviol glycosides in foods[J]. Current Opinion in Food Science,2021,43:91−98.
    [18]
    YOUNES M, AGGETT P, AGUILAR F, et al. Safety evaluation of glucosylated steviol glycosides as a food additive in different food categories[J]. EFSA Journal, 2022, 16(2): e07066.
    [19]
    CASTRO-MUÑOZ R, DÍAZ-MONTES E, CASSANO A, et al. Membrane separation processes for the extraction and purification of steviol glycosides:An overview[J]. Critical Reviews in Food Science and Nutrition,2020,61(13):2152−2174.
    [20]
    AHMAD J, KHAN I, BLUNDELL R, et al. Stevia rebaudiana Bertoni:An updated review of its health benefits, industrial applications and safety[J]. Trends in Food Science & Technology,2020,100:177−189.
    [21]
    TIAN X Y, ZHONG F, XIA Y X. Dynamic characteristics of sweetness and bitterness and their correlation with chemical structures for six steviol glycosides[J]. Food Research International,2021,151:110848.
    [22]
    郭保党, 饶义剑. 新型甜味剂莱鲍迪苷D和莱鲍迪苷M的生物转化进展[J]. 食品与发酵工业,2023,49(7):289−296. [GUO B D, RAO Y J. Current advances in the biotransformation of new type sweeteners Rebaudioside D and Rebaudioside M[J]. Food and Fermentation Industries,2023,49(7):289−296.]

    GUO B D, RAO Y J. Current advances in the biotransformation of new type sweeteners Rebaudioside D and Rebaudioside M[J]. Food and Fermentation Industries, 2023, 49(7): 289−296.
    [23]
    TAO R, CHO S. Consumer-Based Sensory Characterization of Steviol Glycosides (Rebaudioside A, D, and M)[J]. Foods,2020,9(8):10226.
    [24]
    ORELLANA-PAUCAR A M. Steviol glycosides from stevia rebaudiana:An updated overview of their sweetening activity, pharmacological properties, and safety aspects[J]. Molecules,2323,28(3):1258.
    [25]
    陈俊名. 甜菊糖苷的体外代谢及生物活性研究[D]. 无锡:江南大学, 2019. [CHEN J M. In vitro metabolism and biological activity of the steviol glycosides[D]. Wuxi:Jiangnan University, 2019.]

    CHEN J M. In vitro metabolism and biological activity of the steviol glycosides[D]. Wuxi: Jiangnan University, 2019.
    [26]
    KUREK J M, KRÓL E, KREJPCIO Z. Steviol glycosides supplementation affects lipid metabolism in high-fat fed STZ-induced diabetic rats[J]. Nutrients,2020,13(1):112.1.
    [27]
    DYRSKOG S E U, JEPPESEN P B, CHEN J, et al. The diterpene glycoside, rebaudioside A, does not improve glycemic control or affect blood pressure after eight weeks treatment in the Goto-Kakizaki rat[J]. The Review of Diabetic Studies,2005,2(2):84−91. doi: 10.1900/RDS.2005.2.84
    [28]
    LAILERD N, SAENGSIRISUWAN V, SLONIGER J A, et al. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle[J]. Metabolism,2004,53(1):101−107. doi: 10.1016/j.metabol.2003.07.014
    [29]
    YASUKAWA K, KITANAKA S, SEO S. Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin[J]. Biological and Pharmaceutical Bulletin,2002,25(11):1488. doi: 10.1248/bpb.25.1488
    [30]
    VELESIOTIS C, KANELLAKIS M, VYNIOS D H. Steviol glycosides affect functional properties and macromolecular expression of breast cancer cells[J]. IUBMB Life,2022,74(10):1012−1028. doi: 10.1002/iub.2669
    [31]
    CHEN J M, XIA Y M, SUI X C, et al. Steviol, a natural product inhibits proliferation of the gastrointestinal cancer cells intensively[J]. Oncotarget,2018,9(41):26299−26308. doi: 10.18632/oncotarget.25233
    [32]
    CHEN J W, HOU K, QIN P, et al. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes[J]. BMC Genomics,2014,15(1):571. doi: 10.1186/1471-2164-15-571
    [33]
    HUANG Y, XIE F J, CAO X, et al. Research progress in biosynthesis and regulation of plant terpenoids[J]. Biotechnology & Biotechnological Equipment,2022,35(1):1800−1809.
    [34]
    VOLKE D C, ROHWER J, FISCHER R, et al. Investigation of the methylerythritol 4-phosphate pathway for microbial terpenoid production through metabolic control analysis[J]. Microbial Cell Factories,2019,18(1):192. doi: 10.1186/s12934-019-1235-5
    [35]
    KUMAR H, SINGH K, KUMAR S. 2C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase from Stevia rebaudiana Bertoni is a functional gene[J]. Molecular Biology Reports,2012,39(12):10971−10978. doi: 10.1007/s11033-012-1998-9
    [36]
    FRANK A, GROLL M. The methylerythritol phosphate pathway to isoprenoids[J]. Chemical Reviews,2017,117(8):5675−5703. doi: 10.1021/acs.chemrev.6b00537
    [37]
    KWON M, SHIN B K, LEE J, et al. Characterization of Burkholderia glumae BGR1 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), the terminal enzyme in 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway[J]. Applied Biological Chemistry,2013,56(1):35−40.
    [38]
    NETI S S, PAN J J, POULTER C D. Mechanistic studies of the protonation-deprotonation reactions for type 1 and type 2 isopentenyl diphosphate:Dimethylallyl diphosphate isomerase[J]. Journal of the American Chemical Society,2018,140(40):12900−12908. doi: 10.1021/jacs.8b07274
    [39]
    YOU M K, LEE Y J, KIM J K, et al. The organ-specific differential roles of rice DXS and DXR, the first two enzymes of the MEP pathway, in carotenoid metabolism in Oryza sativa leaves and seeds[J]. BMC Plant Biology,2020,20(1):167. doi: 10.1186/s12870-020-02357-9
    [40]
    WANG Q, QUAN S, XIAO H. Towards efficient terpenoid biosynthesis:manipulating IPP and DMAPP supply[J]. Bioresources and Bioprocessing,2019,6:6. doi: 10.1186/s40643-019-0242-z
    [41]
    ZHENG J S, ZHUANG Y, MAO H Z, et al. Overexpression of SrDXS1 and SrKAH enhances steviol glycosides content in transgenic Stevia plants[J]. BMC Plant Biology,2019,19(1):1. doi: 10.1186/s12870-018-1600-2
    [42]
    BISWAS P, KUMARI A, MODI A, et al. Improvement and regulation of steviol glycoside biosynthesis in Stevia rebaudiana Bertoni[J]. Gene,2023,891:147809.
    [43]
    TOTTÉ N, CHARON L, ROHMER M, et al. Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway[J]. Tetrahedron Letters,2000,41:6407−6410. doi: 10.1016/S0040-4039(00)01094-7
    [44]
    GOLD N D, ELENA F, HANSEN C C, et al. A combinatorial approach to study cytochrome P450 enzymes for De Novo production of steviol glucosides in baker's yeast[J]. ACS Synthetic Biology,2018,7(12):2918−2929. doi: 10.1021/acssynbio.8b00470
    [45]
    KNAUER J F, SCHULZ C, ZEMELLA A, et al. Synthesis of mono Cytochrome P450 in a modified CHO-CPR cell-free protein production platform[J]. Scientific Reports,2024,14(1):1271. doi: 10.1038/s41598-024-51781-6
    [46]
    LIBIK-KONIECZNY M, MICHALEC-WARZECHA A, DZIURKA M, et al. Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions[J]. Applied Microbiology and Biotechnology,2020,104(13):5929−5941. doi: 10.1007/s00253-020-10661-5
    [47]
    CEUNEN S, GEUNS J M C. Steviol glycosides:Chemical diversity, metabolism, and function[J]. Journal of Natural Products,2013,76(6):1201−1028. doi: 10.1021/np400203b
    [48]
    李亚桐, 马媛媛, 汪振洋, 等. 甜菊糖苷的应用及生物合成研究进展[J]. 中国生物工程杂志,2023,43(1):104−114. [LI Y T, MA Y Y, WANG Z Y, et al. Research progress of application and biosynthesis of steviol glycosides[J]. China Biotechnology,2023,43(1):104−114.]

    LI Y T, MA Y Y, WANG Z Y, et al. Research progress of application and biosynthesis of steviol glycosides[J]. China Biotechnology, 2023, 43(1): 104−114.
    [49]
    OLSSON K, CARLSEN S, SEMMLER A, et al. Microbial production of next-generation stevia sweeteners[J]. Microbial Cell Factories,2016,15:207. doi: 10.1186/s12934-016-0609-1
    [50]
    刘啸尘, 刘护, 张良, 等. 细胞代谢过程中的酶促糖基化及其功能[J]. 中国生物工程杂志,2018,38(1):69−77. [LIU X C, LIU H, ZHANG L, et al. Enzymatic glycosylation and its function in metabolic process of cells[J]. Chinese Biotechnology,2018,38(1):69−77.]

    LIU X C, LIU H, ZHANG L, et al. Enzymatic glycosylation and its function in metabolic process of cells[J]. Chinese Biotechnology, 2018, 38(1): 69−77.
    [51]
    RAHIMI S, KIM J, MIJAKOVIC I, et al. Triterpenoid-biosynthetic UDP-glycosyltransferases from plants[J]. Biotechnology Advances,2019,37(7):107394. doi: 10.1016/j.biotechadv.2019.04.016
    [52]
    OSMANI S A, BAK S, MØLLER B L. ChemInform abstract:Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling[J]. ChemInform,2009,70(3):325−347.
    [53]
    MOHAMED A A A, CEUNEN S, GEUNS J M C, et al. UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides[J]. Journal of Plant Physiology,2011,168(10):1136−1141. doi: 10.1016/j.jplph.2011.01.030
    [54]
    WU Q, CHRISTOPHE H L, HAN-YI C, et al. An efficient stevia rebaudiana transformation system and in vitro enzyme assays reveal novel insights into UGT76G1 Function[J]. Scientific reports,2020,10(1):3773. doi: 10.1038/s41598-020-60776-y
    [55]
    LIBIK-KONIECZNY M, CAPECKA E, TULEJA M, et al. Synthesis and production of steviol glycosides:Recent research trends and perspectives[J] Applied Microbiology and Biotechnology, 2021, 105(10):3883-3900.
    [56]
    LIN Y, WEN M M, LAN Q, et al. A strategy to increase rebaudioside A content based on one-step bioconversion of Stevia extract to steviol[J]. Green Chemistry,2023,8:3214−3222.
    [57]
    ZHANG R Q, TANG R Q, BI J H, et al. Efficient bioconversion of stevioside and rebaudioside a to glucosylated steviol glycosides using an Alkalihalobacillus oshimesis-derived cyclodextrin glucanotransferase[J]. Molecules,2023,28(3):1245. doi: 10.3390/molecules28031245
    [58]
    YANG T, ZHANG J Z, KE D, et al. Hydrophobic recognition allows the glycosyltransferase UGT76G1 to catalyze its substrate in two orientations[J]. Nature Communications,2019,10(1):1−12. doi: 10.1038/s41467-018-07882-8
    [59]
    LIU Z F, LI J X, SUN Y W, et al. Structural insights into the catalytic mechanism of a plant diterpene glycosyltransferase SrUGT76G1[J]. Plant Communications,2020,1(1):100004. doi: 10.1016/j.xplc.2019.100004
    [60]
    ZHANG S S, YAN Y S, LYU C C, et al. Identification of the Key Residues of the Uridine Diphosphate Glycosyltransferase 91D2 and its Effect on the Accumulation of Steviol Glycosides in Stevia rebaudiana[J]. Journal of Agricultural and Food Chemistry,2021,69(6):1852−1863. doi: 10.1021/acs.jafc.0c07066
    [61]
    ZHANG J Z, TANG M H, CHEN Y J, et al. Catalytic flexibility of rice glycosyltransferase OsUGT91C1 for the production of palatable steviol glycosides[J]. Nature Communications,2021,12(1):7030. doi: 10.1038/s41467-021-27144-4
    [62]
    BRANDLE J, TELMER P. Steviol glycoside biosynthesis[J]. Phytochemistry,2007,68(14):1855−1863. doi: 10.1016/j.phytochem.2007.02.010
    [63]
    王蓓蓓. 甜叶菊UGT76G1在毕赤酵母细胞的表面展示[D]. 广州:华南理工大学, 2014. [WANG B B. Cell-surface display of UGT76G1 from Stevia rebaudiana in Pichia pastoris[D]. Guangzhou:South China University of Technology, 2014.]

    WANG B B. Cell-surface display of UGT76G1 from Stevia rebaudiana in Pichia pastoris[D]. Guangzhou: South China University of Technology, 2014.
    [64]
    KIM M J, ZHENG J, MING H, et al. Overexpression of SrUGT76G1 in Stevia alters major steviol glycosides composition towards improved quality[J]. Plant Biotechnology Journal,2019,17(6):1037−1047. doi: 10.1111/pbi.13035
    [65]
    YONEDA Y, SHIMIZU H, NAKASHIMA H, et al. Effect of treatment with gibberellin, gibberellin biosynthesis inhibitor, and auxin on steviol glycoside content in stevia rebaudiana Bertoni[J]. Sugar Tech,2017,20(4):482−491.
    [66]
    GERWIG G J, TE POELE E M, DIJKHUIZEN L, et al. Stevia Glycosides:Chemical and enzymatic modifications of their carbohydrate moieties to improve the sweet-tasting quality[J]. Advances in Carbohydrate Chemistry and Biochemistry,2016,73:1−72.
    [67]
    李铭敏, 郑仁朝, 郑裕国. 甜菊糖苷的生物合成途径与生物转化制备策略的研究概述[J]. 食品与发酵工业,2015,41(9):236−242. [LI M M, ZHENG R C, ZHENG Y G. Study of steviol glycosides biosynthesis pathway and the advances in its bioconversion strategies[J]. Food and Fermentation Industries,2015,41(9):236−242.]

    LI M M, ZHENG R C, ZHENG Y G. Study of steviol glycosides biosynthesis pathway and the advances in its bioconversion strategies[J]. Food and Fermentation Industries, 2015, 41(9): 236−242.
    [68]
    史石磊. 甜菊糖苷提取工艺进展[J]. 食品工业,2023,44(6):157−159. [SHI S L. Progress in steviol glycoside extraction process[J]. The Food Industry,2023,44(6):157−159.]

    SHI S L. Progress in steviol glycoside extraction process[J]. The Food Industry, 2023, 44(6): 157−159.
    [69]
    CHEN M Q, ZENG X A, ZHU Q Q, et al. Effective synthesis of rebaudioside a by whole-cell biocatalyst Pichia pastoris[J]. Biochemical Engineering Journal,2021,175:108117. doi: 10.1016/j.bej.2021.108117
    [70]
    CZINKÓCZKY R, NÉMETH A. Enrichment of the rebaudioside A concentration in Stevia rebaudiana extract with cyclodextrin glycosyltransferase from Bacillus licheniformis DSM 13[J]. Engineering in Life Sciences,2021,22(1):30−39.
    [71]
    YANG S, HOU X, DENG Z W, et al. Improving the thermostability of glycosyltransferase YojK by targeting mutagenesis for highly efficient biosynthesis of rebaudioside D[J]. Molecular Catalysis,2023,535:112898. doi: 10.1016/j.mcat.2022.112898
    [72]
    WANG Z Y, HONG J F, MA S Y, et al. Heterologous expression of EUGT11 from Oryza sativa in Pichia pastoris for highly efficient one-pot production of rebaudioside D from rebaudioside A[J]. International Journal of Biological Macromolecules,2020,163:1669−1676. doi: 10.1016/j.ijbiomac.2020.09.132
    [73]
    CHEN L L, PAN H Y, CAI R X, et al. Bioconversion of stevioside to rebaudioside E using glycosyltransferase UGTSL2[J]. Applied Biochemistry and Biotechnology,2020,193(3):637−649.
    [74]
    CHEN L L, SUN P, ZHOU F F, et al. Synthesis of rebaudioside D, using glycosyltransferase UGTSL2 and in situ UDP-glucose regeneration[J]. Food Chemistry,2018,259:286−291. doi: 10.1016/j.foodchem.2018.03.126
    [75]
    CHEN L L, CAI R X, WENG J Y, et al. Production of rebaudioside D from stevioside using a UGTSL2 Asn358Phe mutant in a multi-enzyme system[J]. Microbial BiBotechnology,2020,13(4):974−983. doi: 10.1111/1751-7915.13539
    [76]
    宋浩, 汪振洋, 马媛媛, 等. 一种能够催化莱鲍迪苷A生成多种甜菊糖苷衍生物的糖基转移酶CaUGT:中国, 202111680606.0[P]. 2023-01-03. [SONG H, WANG Z Y, MA Y Y, et al. CaUGT, a glycosyltransferase capable of catalyzing the generation of multiple steviol glycoside derivatives from Leiboldin A:China, 202111680606.0[P]. 2023-01-03.]

    SONG H, WANG Z Y, MA Y Y, et al. CaUGT, a glycosyltransferase capable of catalyzing the generation of multiple steviol glycoside derivatives from Leiboldin A: China, 202111680606.0[P]. 2023-01-03.
    [77]
    SHU W J, ZHENG H C, FU X P, et al. Enhanced heterologous production of glycosyltransferase UGT76G1 by co-Expression of endogenous prpD and malK in Escherichia coli and its transglycosylation application in production of rebaudioside[J]. International Journal of Molecular Sciences,2020,21(16):5752. doi: 10.3390/ijms21165752
    [78]
    马媛媛, 李亚桐, 魏晓珍, 等. 一种与特定短肽标签融合能高效催化Reb M生成的重组酶:中国, 202111481579.4[P]. 2022-03-18. [MA Y Y, LI Y T, WEI X Z, et al. A recombinant enzyme fused to a specific short peptide tag efficiently catalyzes Reb M generation:China, 202111481579.4[P]. 2022-03-18.]

    MA Y Y, LI Y T, WEI X Z, et al. A recombinant enzyme fused to a specific short peptide tag efficiently catalyzes Reb M generation: China, 202111481579.4[P]. 2022-03-18.
    [79]
    WANG Z Y, LIU W B, LIU W, et al. Co-immobilized recombinant glycosyltransferases efficiently convert rebaudioside A to M in cascade[J]. RSC Advances,2021,11(26):15785−15794. doi: 10.1039/D0RA10574K
    [80]
    MOON J H, LEE K, LEE J H, et al. Redesign and reconstruction of a steviol-biosynthetic pathway for enhanced production of steviol in Escherichia coli[J]. Microbial Cell Factories,2020,19(1):20. doi: 10.1186/s12934-020-1291-x
    [81]
    KO S C, WOO H M. Biosynthesis of the calorie-free sweetener precursor ent-kaurenoic acid from CO2 using engineered Ccyanobacteria[J]. ACS Synthetic Biology , 2020:2979-2985 .
    [82]
    LI Y, LI Y Y, WANG Y, et al. Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae[J]. Applied Biochemistry and Biotechnology,2016,178(8):1586−1598. doi: 10.1007/s12010-015-1969-4
    [83]
    ZERVA A, CHOROZIAN K, KRITIKOU A S, et al. β-glucosidase and β-galactosidase-mediated transglycosylation of steviol glycosides utilizing industrial byproducts[J]. Front Bioeng Biotechnol,2021,9:685099. doi: 10.3389/fbioe.2021.685099
    [84]
    SINGH A K, SINGH A, SINGH R, et al. Non-sugar sweeteners and health outcomes in adults without diabetes:Deciphering the WHO recommendations in the Indian context[J]. RSC Advances,2023,17(8):102829.
    [85]
    XU Y M, WU Y K, LIU Y F, et al. Sustainable bioproduction of natural sugar substitutes:Strategies and challenges[J]. Trends in Food Science Technology,2022,129:512−527. doi: 10.1016/j.jpgs.2022.11.008

Catalog

    Article Metrics

    Article views (57) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return