LI Qian, ZENG Xiangbing, SUN Xitong, et al. Process Optimization and Application of Lipase Immobilized on Phenol Amino Modified MCM-41[J]. Science and Technology of Food Industry, 2025, 46(5): 168−177. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020096.
Citation: LI Qian, ZENG Xiangbing, SUN Xitong, et al. Process Optimization and Application of Lipase Immobilized on Phenol Amino Modified MCM-41[J]. Science and Technology of Food Industry, 2025, 46(5): 168−177. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020096.

Process Optimization and Application of Lipase Immobilized on Phenol Amino Modified MCM-41

More Information
  • Received Date: February 19, 2024
  • Available Online: December 24, 2024
  • In order to construct a new catalytic system of immobilized lipase and improve the stability of enzyme, the phenol amino modified ordered mesoporous material (MCM-41) was introduced for the study of lipase immobilization. The immobilized enzyme was also applied to the actual reaction system. The optimized conditions of lipase immobilization were as follows: Immobilization temperature of 30 ℃, immobilization pH of 8.0, immobilization time of 7 h, initial enzyme concentration of 4 mg/mL, and the enzyme loading was 26.40 mg/g. Meanwhile, the optimum reaction temperature of the immobilized enzyme was 50 ℃, and the optimum reaction pH was 7.0, together with the highest enzyme activity was 4108±34.74 U/g carrier. The immobilized enzyme was recycled for eight times, and it retained 54.70% of the initial enzyme activity. While after 30 days of storage at 4 ℃, it still kept 71.10% of the initial enzyme activity. In addition, the immobilized enzyme was used to catalyze the synthesis of hexyl laurate, and the highest conversion of lauric acid was 65.38%. It was indicated that the lipase immobilized on phenol amino modified MCM-41 exhibited high enzyme activity and good stability. When it was applied in the actual catalytic reaction, the immobilized enzyme displayed high catalytic efficiency. Furthermore, it was proved that phenol amino modification was a green and effective modification strategy, which could provide ideas for further application of phenol amino coating.
  • loading
  • [1]
    MEHTA A, BODH U, GUPTA R. Fungal lipases:A review[J]. Journal of Biotech Research,2017,8(1):58−77.
    [2]
    REETZ M T. Biocatalysis in organic chemistry and biotechnology:Past, present, and future[J]. Journal of the American Chemical Society,2013(34):135.
    [3]
    多拉娜, 徐伟良, 李春冬, 等. 产脂肪酶微生物的研究进展及其在食品中的应用[J]. 粮食与油脂,2020,33(10):8−10. [DUO L N, XU W L, LI C D, et al. Research progress on the lipase-producing microbial and its application in food[J]. Cereals and Oils,2020,33(10):8−10.] doi: 10.3969/j.issn.1008-9578.2020.10.004

    DUO L N, XU W L, LI C D, et al. Research progress on the lipase-producing microbial and its application in food[J]. Cereals and Oils, 2020, 33(10): 8−10. doi: 10.3969/j.issn.1008-9578.2020.10.004
    [4]
    胡兴翠, 刘建华. 微生物脂肪酶特性及工业应用[J]. 基因组学与应用生物学,2019,38(8):3572−3579. [HU X C, LIU J H. Characteristics and industrial applications of microbial lipase[J]. Genomics and Applied Biology,2019,38(8):3572−3579.]

    HU X C, LIU J H. Characteristics and industrial applications of microbial lipase[J]. Genomics and Applied Biology, 2019, 38(8): 3572−3579.
    [5]
    SHEN J W, CAI X, DOU B J, et al. Expression and characterization of a CALB-type lipase from Sporisorium reilianum SRZ2 and its potential in short-chain flavor ester synthesis[J]. Frontiers of Chemical Science and Engineering,2020,14:868−879. doi: 10.1007/s11705-019-1889-x
    [6]
    RODRIGUES R C, VIRGEN-ORTÍZ J J, DOS SANTOS J C S, et al. Immobilization of lipases on hydrophobic supports:Immobilization mechanism, advantages, problems, and solutions[J]. Biotechnology Advances,2019,37(5):746−770. doi: 10.1016/j.biotechadv.2019.04.003
    [7]
    LOUHASAKUL Y, CHEIRSILP B. Potential use of industrial by-products as promising feedstock for microbial lipid and lipase production and direct transesterification of wet yeast into biodiesel by lipase and acid catalysts[J]. Bioresource Technology,2022,348:126742. doi: 10.1016/j.biortech.2022.126742
    [8]
    CAI X, SHEN J W, QIANG Y, et al. Efficient activity enhancement of a lipase from Sporisorium reilianum for the synthesis of a moxifloxacin chiral intermediate via rational design[J]. Engineering,2022(12):10.
    [9]
    ZHANG X, CHEN L, AI N, et al. Lipase-catalyzed enhancement of milk flavor components in the application of modified skim milk products[J]. Journal of Food Measurement and Characterization,2021,15(5):4256−4266. doi: 10.1007/s11694-021-01001-w
    [10]
    AHRARI F, MOHAMMADI M. Combined cross-linking of Rhizomucor miehei lipase and Candida antarctica lipase B for the effective enrichment of omega-3 fatty acids in fish oil[J]. International Journal of Biological Macromolecules,2024,260:129362. doi: 10.1016/j.ijbiomac.2024.129362
    [11]
    张永民. 纤维素链霉菌AU-10源脂肪酶‒—一种可应用于洗涤剂配方的酶[J]. 中国洗涤用品工业,2020(7):64−72. [ZHANG Y M. Lipase from Streptomyces cellulose AU-10—An enzyme that can be applied to detergent formulations[J]. China Cleaning Industry,2020(7):64−72.]

    ZHANG Y M. Lipase from Streptomyces cellulose AU-10—An enzyme that can be applied to detergent formulations[J]. China Cleaning Industry, 2020(7): 64−72.
    [12]
    NITBANI F O, TJITDA P J P, NITTI F, et al. Antimicrobial properties of lauric acid and monolaurin in virgin coconut oil:A review[J]. Chembioeng Reviews,2022,9(5):442−461. doi: 10.1002/cben.202100050
    [13]
    CHEN C, LIU Y, TIAN H, et al. Metagenomic analysis reveals the impact of JIUYAO microbial diversity on fermentation and the volatile profile of Shaoxing-jiu[J]. Food Microbiology,2020,86:103326. doi: 10.1016/j.fm.2019.103326
    [14]
    ZHAO M, CAI H, LIU M, et, al. Dietary glycerol monolaurate supplementation for the functional properties modification of egg white protein[J]. Journal of the Science of Food and Agriculture,2019,99(8):3852−3859. doi: 10.1002/jsfa.9607
    [15]
    HUANG S M, LI H J, LIU Y C, et, al. An efficient approach for lipase-catalyzed synthesis of retinyl laurate nutraceutical by combining ultrasound assistance and artificial neural network optimization[J]. Molecules,2017,22(11):1972. doi: 10.3390/molecules22111972
    [16]
    CHANG S W, SHAW J F, SHIEH C J. Optimization of enzymatically prepared hexyl butyrate by lipozyme IM77[J]. Food Technol Biotech,2003,41:237−42.
    [17]
    CHANG S W, SHAW J F, YANG C K, et al. Optimal continuous biosynthesis of hexyl laurate by a packed bed bioreactor[J]. Process Biochemistry,2007,42(9):1362−1366. doi: 10.1016/j.procbio.2007.06.008
    [18]
    裴帅龙, 田盛, 姜璐, 等. 固定化酶技术及其载体材料研究[J]. 天津化工,2023,37(5):12−15. [PEI S L, TIAN S, JIANG L, et al. Study on immobilized enzyme technology and its carrier materials[J]. Tianjin Chemical Industry,2023,37(5):12−15.] doi: 10.3969/j.issn.1008-1267.2023.05.004

    PEI S L, TIAN S, JIANG L, et al. Study on immobilized enzyme technology and its carrier materials[J]. Tianjin Chemical Industry, 2023, 37(5): 12−15. doi: 10.3969/j.issn.1008-1267.2023.05.004
    [19]
    MAGHRABY Y R, EL-SHABASY R M, IBRAHIM A H, et al. Enzyme immobilization technologies and industrial applications[J]. ACS Omega,2023,8(6):5184−5196. doi: 10.1021/acsomega.2c07560
    [20]
    ZHAI T, WANG C, GU F, et al. Dopamine/polyethylenimine-modified silica for enzyme immobilization and strengthening of enzymatic CO2 eonversion[J]. ACS Sustainable Chemistry and Engineering,2020,8(40):15250−15257. doi: 10.1021/acssuschemeng.0c04975
    [21]
    ZHAO J, MA M, YAN X, et al. Green synthesis of polydopamine functionalized magnetic mesoporous biochar for lipase immobilization and its application in interesterification for novel structured lipids production[J]. Food Chemistry,2022,379:132148. doi: 10.1016/j.foodchem.2022.132148
    [22]
    孙晓杰. 基于多巴胺表面交联的高性能固定化酶用于多肽制备的动力学特性研究[D]. 烟台:鲁东大学, 2022. [SUN X J. Kinetic characterization of high-performance immobilized enzymes based on dopamine surface cross-linking for peptide preparation[D]. Yantai:Ludong University, 2022.]

    SUN X J. Kinetic characterization of high-performance immobilized enzymes based on dopamine surface cross-linking for peptide preparation[D]. Yantai: Ludong University, 2022.
    [23]
    TANG W, CHEN C, SUN W, et al. Low-cost mussel inspired poly (catechol/polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme[J]. International Journal of Biological Macromolecules,2019,128:814−824. doi: 10.1016/j.ijbiomac.2019.01.161
    [24]
    TANG W, LI H, ZHANG W, et al. Site-specific and covalent immobilization of lipase on natural polyphenol-modified magnetic nanoparticles for effective biodiesel production[J]. ACS Sustainable Chemistry and Engineering,2022,10(17):5384−5395. doi: 10.1021/acssuschemeng.1c07881
    [25]
    朱衡, 林海蛟, 张继福, 等. 氨基载体共价结合固定化海洋假丝酵母脂肪酶[J]. 中国生物工程杂志,2019,39(7):71−78. [ZHU H, LIN H J, ZHANG J F, et al. Covalent immobilization of marine Candida rugosa lipase using amino carrier[J]. China Biotechnology,2019,39(7):71−78.]

    ZHU H, LIN H J, ZHANG J F, et al. Covalent immobilization of marine Candida rugosa lipase using amino carrier[J]. China Biotechnology, 2019, 39(7): 71−78.
    [26]
    BOURKAIB M C, GAUDIN P, VIBERT F, et al. APTES modified SBA-15 and meso-macro silica materials for the immobilization of aminoacylases from Streptomyces ambofaciens[J]. Microporous and Mesoporous Materials,2021,323:111226. doi: 10.1016/j.micromeso.2021.111226
    [27]
    韩明才. 单宁酸(TA)-3-氨丙基三乙氧基硅烷(APTES)涂层的功能化及其在水处理中的应用研究[D]. 南昌:南昌大学, 2020. [HAN M C. Funcionalization of tannic acid(TA)-3-aninopropyltriethoxysilane (APTES) coating and its application in water treatment[D]. Nanchang:Nanchang University, 2020.]

    HAN M C. Funcionalization of tannic acid(TA)-3-aninopropyltriethoxysilane (APTES) coating and its application in water treatment[D]. Nanchang: Nanchang University, 2020.
    [28]
    张灿, 姜国芳, 杨江楠, 等. 多孔材料固定化脂肪酶的研究进展[J]. 分子催化,2020,34(4):378−396. [ZHANG C, JIANG G F, YANG J N, et al. Research progress of immobilized lipase on porous materials[J]. Journal of Molecular Catalysis(China),2020,34(4):378−396.]

    ZHANG C, JIANG G F, YANG J N, et al. Research progress of immobilized lipase on porous materials[J]. Journal of Molecular Catalysis(China), 2020, 34(4): 378−396.
    [29]
    徐鹏, 吴克, 俞志敏, 等. 介孔分子筛MCM-41固定中性脂肪酶条件的研究[J]. 生物学杂志,2012,29(3):27−30. [XU P, WU K, YU Z M, et al. Study on conditions of mesoporous molecular sieve MCM-41 fixed neutral lipase[J]. Journal of Biology,2012,29(3):27−30.] doi: 10.3969/j.issn.2095-1736.2012.03.027

    XU P, WU K, YU Z M, et al. Study on conditions of mesoporous molecular sieve MCM-41 fixed neutral lipase[J]. Journal of Biology, 2012, 29(3): 27−30. doi: 10.3969/j.issn.2095-1736.2012.03.027
    [30]
    王淑婧, 曾祥冰, 孙西同, 等. 贻贝仿生涂层修饰聚合物微球固定化脂肪酶的制备及应用[J]. 食品工业科技,2024,45(1):108−117. [WANG S J, ZENG X B, SUN X T, et, al. Synthesis and application of lipase immobilized on mussel-inspired polymer microspheres[J]. Science and Technology of Food Industry,2024,45(1):108−117.]

    WANG S J, ZENG X B, SUN X T, et, al. Synthesis and application of lipase immobilized on mussel-inspired polymer microspheres[J]. Science and Technology of Food Industry, 2024, 45(1): 108−117.
    [31]
    YU D, ZHANG X, WANG T, et al. Immobilized Candida antarctica lipase B (CALB) on functionalized MCM-41:Stability and catalysis of transesterifsication of soybean oil and phytosterol[J]. Food Bioscience,2021,40:100906. doi: 10.1016/j.fbio.2021.100906
    [32]
    罗旭聪. 基于共价有机框架材料构建生物催化剂及性能研究[D]. 天津:河北工业大学, 2020. [LUO X C. Construction of biocatalyst based on covalent organic frame materials and the catalytic performance[D]. Tianjin:Hebei University of Technology, 2020.]

    LUO X C. Construction of biocatalyst based on covalent organic frame materials and the catalytic performance[D]. Tianjin: Hebei University of Technology, 2020.
    [33]
    Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976(72):248−254.
    [34]
    梁准成. 月桂酸单甘酯类衍生物的合成及性质研究[D]. 广州:华南理工大学, 2015. [LIANG Z C. Research on synthesis and properties of glycerol monolaurin derivatives[D]. Guangzhou:South China University of Technology, 2015.]

    LIANG Z C. Research on synthesis and properties of glycerol monolaurin derivatives[D]. Guangzhou: South China University of Technology, 2015.
    [35]
    国家粮食局标准质量中心. LS/T 6107-2012 动植物油脂 酸值和酸度测定 自动滴定分析仪法[S]. 北京:国家粮食局, 2012. [National Food Bureau Standard Quality Center. LS/T 6107-2012 Animal and vegetable fats and oils Determination of acid value and acidity Method of automatic titration analyzer[S]. Beijing:National Food Bureau, 2012.]

    National Food Bureau Standard Quality Center. LS/T 6107-2012 Animal and vegetable fats and oils Determination of acid value and acidity Method of automatic titration analyzer[S]. Beijing: National Food Bureau, 2012.
    [36]
    ZHOU F, LUO J, SONG S, et al. Nanostructured polyphenol-mediated coating:A versatile platform for enzyme immobilization and micropollutant removal[J]. Industrial and Engineering Chemistry Research,2020,59(7):2708−2717. doi: 10.1021/acs.iecr.9b05708
    [37]
    李笑迎, 白文静, 陶凯, 等. 大孔/介孔多级孔SiO2的制备及其在固定化脂肪酶中的应用[J]. 材料导报,2018,32(10):1695−1700,1715. [LI X Y, BAI W J, TAO K, et al. Preparation of hierarchical macroporous/mesoporous silica and its application in lipase immobilization[J]. Materials Review,2018,32(10):1695−1700,1715.] doi: 10.11896/j.issn.1005-023X.2018.10.024

    LI X Y, BAI W J, TAO K, et al. Preparation of hierarchical macroporous/mesoporous silica and its application in lipase immobilization[J]. Materials Review, 2018, 32(10): 1695−1700,1715. doi: 10.11896/j.issn.1005-023X.2018.10.024
    [38]
    李雪玉, 周海燕, 周华, 等. 大孔树脂修饰固定化脂肪酶催化合成L-薄荷醇酯[J]. 高校化学工程学报,2018,32(5):1134−1139. [LI X Y, ZHOU H Y, ZHOU H, et al. Synthesis of L-menthol oleate catalyzed by lipase immobilized on modified macroporous resins[J]. Journal of Chemical Engineering of Chinese Universities,2018,32(5):1134−1139.] doi: 10.3969/j.issn.1003-9015.2018.05.019

    LI X Y, ZHOU H Y, ZHOU H, et al. Synthesis of L-menthol oleate catalyzed by lipase immobilized on modified macroporous resins[J]. Journal of Chemical Engineering of Chinese Universities, 2018, 32(5): 1134−1139. doi: 10.3969/j.issn.1003-9015.2018.05.019
    [39]
    GUO H, LEI B, YU J, et al. Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles[J]. International Journal of Biological Macromolecules,2021,185:287−296. doi: 10.1016/j.ijbiomac.2021.06.073
    [40]
    CAO X, XU H, LI F, et al. One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase[J]. Renewable Energy,2021,171:11−21. doi: 10.1016/j.renene.2021.02.065
    [41]
    周晓彤, 许俊洋, 姜艳军, 等. 铈基介孔金属有机骨架固定化酶的构建及催化性能[J]. 化学通报,2023,86(9):1103−1111. [ZHOU X T, XU J Y, JIANG Y J, et al. Construction and catalytic performance of cerium-based mesoporous MOF immobilized enzymes[J]. Chemistry,2023,86(9):1103−1111.]

    ZHOU X T, XU J Y, JIANG Y J, et al. Construction and catalytic performance of cerium-based mesoporous MOF immobilized enzymes[J]. Chemistry, 2023, 86(9): 1103−1111.
    [42]
    LI C, ZHANG G, LIU N, et al. Preparation and properties of Rhizopus oryzae lipase immobilized using an adsorption-crosslinking method[J]. International Journal of Food Properties,2016,19(8):1776−1785. doi: 10.1080/10942912.2015.1107732
    [43]
    LIU X, WU J, YANG S, et al. Carboxy-functionalized covalent organic framework as a carrier for lipase immobilization and its application in inhibitors screening[J]. Applied Biochemistry and Biotechnology,2024,196:2024−4037.
    [44]
    SUO H, GENG H, ZHANG L, et al. Covalent immobilization of lipase on an ionic liquid-functionalized magnetic Cu-based metal–organic framework with boosted catalytic performance in flavor ester synthesis[J]. Journal of Materials Chemistry B,2023,11(6):1302−1311. doi: 10.1039/D2TB02246J
    [45]
    YADAV G D, VARGHESE S. Enhancing activity by supercritical CO2 mediated immobilization of lipase on mesocellular foam in preparation of hexyl laurate[J]. Applied Biochemistry and Biotechnology,2020,190(2):686−702. doi: 10.1007/s12010-019-03098-8
    [46]
    陈林林, 王玲, 杨茜瑶, 等. 非水相脂肪酶催化合成阿魏酸香茅醇酯[J]. 化学研究与应用,2023,35(6):1307−1315. [CHEN L L, WANG L, YANG X Y, et al. Lipase catalyzed synthesisofcitronellol ferulate in non-aqueous system[J]. Chemical Research and Application,2023,35(6):1307−1315.] doi: 10.3969/j.issn.1004-1656.2023.06.003

    CHEN L L, WANG L, YANG X Y, et al. Lipase catalyzed synthesisofcitronellol ferulate in non-aqueous system[J]. Chemical Research and Application, 2023, 35(6): 1307−1315. doi: 10.3969/j.issn.1004-1656.2023.06.003
    [47]
    SOSE M T, BANSODE S R, RATHOD V K. Solvent free lipase catalyzed synthesis of butyl caprylate[J]. Journal of Chemical Sciences,2017,129:1755−1760. doi: 10.1007/s12039-017-1391-2
    [48]
    王舒舒, 王俞涵, 杨旭, 等. 磁性壳聚糖纳米复合材料固定化褶皱假丝酵母脂肪酶催化合成木质甾醇酯[J]. 精细化工,2023,40(1):124−129. [WANG S S, WANG Y H, YANG X, et al. Synthesis of lignosterol esters catalyzed by Candida rugosa lipase immobilized on magnetic nanocomposites[J]. Fine Chemicals,2023,40(1):124−129.]

    WANG S S, WANG Y H, YANG X, et al. Synthesis of lignosterol esters catalyzed by Candida rugosa lipase immobilized on magnetic nanocomposites[J]. Fine Chemicals, 2023, 40(1): 124−129.

Catalog

    Article Metrics

    Article views (46) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return