Citation: | ZHAI Hongxu, YIN Zexi, SUN Xiyun, et al. Strawberry Mixed Gel 3D Printing Formula Optimization[J]. Science and Technology of Food Industry, 2024, 45(9): 147−158. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040289. |
[1] |
CYBULSKA J, DROBEK M, PANEK J, et al. Changes of pectin structure and microbial community composition in strawberry fruit (Fragaria×ananassa Duch.) during cold storage[J]. Food Chemistry,2022,381:132151. doi: 10.1016/j.foodchem.2022.132151
|
[2] |
钟正丹, 赵长青, 赵兴秀, 等. 草莓深加工研究进展[J]. 农产品加工,2015,385(11):61−64. [ZHONG Zhengdan, ZHAO Changqing, ZHAO Xingxiu, et al. Research progress of strawberry deep processing[J]. Agricultural Products Processing,2015,385(11):61−64.]
ZHONG Zhengdan, ZHAO Changqing, ZHAO Xingxiu, et al. Research progress of strawberry deep processing[J]. Agricultural Products Processing, 2015, 385(11): 61−64.
|
[3] |
师平, 白亚琼. 3D打印技术在食品加工领域中的应用[J]. 食品工业,2021,42(10):231−235. [SHI Ping, BAI Yaqiong. 3D application of printing technology in the field of food processing[J]. Food Industry,2021,42(10):231−235.]
SHI Ping, BAI Yaqiong. 3D application of printing technology in the field of food processing[J]. Food Industry, 2021, 42(10): 231−235.
|
[4] |
WILMS P, DAFFNER K, KERN C, et al. 2021. Formulation engineering of food systems for 3D-printing applications-A review[J]. [J]. Food Research International,2021,148:110585. doi: 10.1016/j.foodres.2021.110585
|
[5] |
KEWUYEMI Y O, KESA H, ADEBO O A. Trends in functional food development with three-dimensional(3D) food printing technology:Prospects for value-added traditionally processed food products[J]. Critical Reviews in Food Science and Nutrition,2021,62(28):31−38.
|
[6] |
周莎莎, 杨晓溪, 李翠平, 等. 添加剂在食品3D打印中的应用现状[J]. 食品工业科技,2023,44(6):41−48. [ZHOU Shasha, YANG Xiaoxi, LI Cuiping, et al. Application status of additives in food 3D printing[J]. Science and Technology of Food Industry,2023,44(6):41−48.]
ZHOU Shasha, YANG Xiaoxi, LI Cuiping, et al. Application status of additives in food 3D printing[J]. Science and Technology of Food Industry, 2023, 44(6): 41−48.
|
[7] |
SUN C H, SUNDARAM G, MARK P R. Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions[J]. Food Hydrocolloids 2007, 7:555−564.
|
[8] |
WILSON S A, CROSS L M, PEAK C W, et al. Shear-thinning and thermo-reversible nanoengineered inks for 3D bioprinting[J]. ACS Applied Materials & Interfaces, 2017, 50:43449−43458 .
|
[9] |
魏林林. 马铃薯食品3D打印设备的设计与试验研究[D]. 西安:陕西科技大学, 2022. [WEI Linlin. Design and experimental study of 3D printing equipment for potato food[D]. Xi'an:Shaanxi University of Science and Technology, 2022.]
WEI Linlin. Design and experimental study of 3D printing equipment for potato food[D]. Xi'an: Shaanxi University of Science and Technology, 2022.
|
[10] |
LIU Z B, ZHANG M, BHESH B. Effect of gums on the rheological, microstructural and extrusion printing characteristics of mashed potatoes[J]. International Journal of Biological Macromolecules,2018,117:1179−1187. doi: 10.1016/j.ijbiomac.2018.06.048
|
[11] |
陈佳楠, 冯敏, 张超, 等. 复合酶对草莓出汁率和澄清度的影响[J]. 食品研究与开发,2022,43(19):27−35. [CHEN Jianan, FENG Min, ZHANG Chao, et al. Effects of complex enzymes on juice yield and clarity of strawberries[J]. Food Research and Development,2022,43(19):27−35.]
CHEN Jianan, FENG Min, ZHANG Chao, et al. Effects of complex enzymes on juice yield and clarity of strawberries[J]. Food Research and Development, 2022, 43(19): 27−35.
|
[12] |
王浩. 超高压处理对蓝莓凝胶体系3D打印特性的影响研究[D]. 沈阳:沈阳农业大学, 2020. [WANG Hao. Study on the effect of ultra-high pressure treatment on the 3D printing characteristics of blueberry gel system[D]. Shenyang:Shenyang Agricultural University, 2020.]
WANG Hao. Study on the effect of ultra-high pressure treatment on the 3D printing characteristics of blueberry gel system[D]. Shenyang: Shenyang Agricultural University, 2020.
|
[13] |
郭辉. 典型粘弹性材料力学特征及率温耦合本构关系[D]. 西安:西北工业大学, 2020. [GUO Hui. Mechanical characteristics and rate-temperature coupling constitutive relationship of typical viscoelastic materials[D]. Xi'an:Northwestern Polytechnical University, 2020.]
GUO Hui. Mechanical characteristics and rate-temperature coupling constitutive relationship of typical viscoelastic materials[D]. Xi'an: Northwestern Polytechnical University, 2020.
|
[14] |
韩蓉, 焦阳. 基于蛋白质和碳水化合物类原料的挤出式3D食品打印技术研究进展[J]. 食品与发酵工业,2023,49(2):297−306. [HAN Rong, JIAO Yang. Research progress of extruded 3D food printing technology based on protein and carbohydrate raw materials[J]. Food and Fermentation Industry,2023,49(2):297−306.]
HAN Rong, JIAO Yang. Research progress of extruded 3D food printing technology based on protein and carbohydrate raw materials[J]. Food and Fermentation Industry, 2023, 49(2): 297−306.
|
[15] |
郑文祺, 蒙珍妮, 李红波, 等. 木耳-鸡骨粉混合凝胶体系的3D打印及质构特性调控[J]. 食品工业科技,2022,43(6):1−8. [ZHENG Wenqi, MENG Jenny, LI Hongbo, et al. 3D printing and texture characteristics regulation of fungus-chicken bone meal mixed gel system[J]. Science and Technology of Food Industry,2022,43(6):1−8.]
ZHENG Wenqi, MENG Jenny, LI Hongbo, et al. 3D printing and texture characteristics regulation of fungus-chicken bone meal mixed gel system[J]. Science and Technology of Food Industry, 2022, 43(6): 1−8.
|
[16] |
CHEN Zhe, ZHAO Donghao, LIU Binhong, et al. 3D Printing of multifunctional hydrogels[J]. Adv Funct Mater,2019,29:1900971. doi: 10.1002/adfm.201900971
|
[17] |
戴妍, 袁莹, 张静, 等. 食品3D打印技术在现代食品工业中的应用进展[J]. 食品工业科技,2022,43(7):35−42. [DAI Yan, YUAN Ying, ZHANG Jing, et al. Application progress of food 3D printing technology in modern food industry[J]. Science and Technology of Food Industry,2022,43(7):35−42.]
DAI Yan, YUAN Ying, ZHANG Jing, et al. Application progress of food 3D printing technology in modern food industry[J]. Science and Technology of Food Industry, 2022, 43(7): 35−42.
|
[18] |
张雅媛, 洪雁, 顾正彪, 等. 玉米淀粉与黄原胶复配体系流变和凝胶特性分析[J]. 农业工程学报,2011,27(9):357−362. [ZHANG Yayuan, HONG Yan, GU Zhengbiao, et al. Rheological and gel characteristics analysis of corn starch and xanthan gum compounding system[J]. Transactions of the Chinese Society of Agricultural Engineering,2011,27(9):357−362.]
ZHANG Yayuan, HONG Yan, GU Zhengbiao, et al. Rheological and gel characteristics analysis of corn starch and xanthan gum compounding system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(9): 357−362.
|
[19] |
杨庆余, 王妍文, 李响, 等. 基于食品3D打印技术的食品原料研究及应用[J]. 食品工业科技,2021,42(8):1−7. [YANG Qingyu, WANG Yanwen, LI Xiang, et al. Research and application of food raw materials based on food 3D printing technology[J]. Science and Technology of Food Industry,2021,42(8):1−7.]
YANG Qingyu, WANG Yanwen, LI Xiang, et al. Research and application of food raw materials based on food 3D printing technology[J]. Science and Technology of Food Industry, 2021, 42(8): 1−7.
|
[20] |
袁超, 桑璐媛, 刘亚伟. κ-卡拉胶的功能特性及其应用研究进展[J]. 河南工业大学学报(自然科学版),2016,37(4):118−123. [YUAN Chao, SANG Luyuan, LIU Yawei. Functional characteristics ofκ-carrageenan and its application research progress[J]. Journal of Henan University of Technology (Natural Science Edition),2016,37(4):118−123.]
YUAN Chao, SANG Luyuan, LIU Yawei. Functional characteristics ofκ-carrageenan and its application research progress[J]. Journal of Henan University of Technology (Natural Science Edition), 2016, 37(4): 118−123.
|
[21] |
刘月云, 盛信仁, 张静. 基于响应面法PLA的3D打印工艺参数优化[J]. 模具制造,2019,19(11):69−71. [LIU Yueyun, SHENG Xinren, ZHANG Jing. Optimization of 3D printing process parameters based on response surface PLA[J]. Mold Manufacturing,2019,19(11):69−71.]
LIU Yueyun, SHENG Xinren, ZHANG Jing. Optimization of 3D printing process parameters based on response surface PLA[J]. Mold Manufacturing, 2019, 19(11): 69−71.
|
[22] |
崔国庭, 王缎, 刘向丽, 等. 响应面法优化草莓酵素的发酵工艺及其生物活性初探[J]. 食品工业科技,2018,39(9):143−148. [CUI Guoting, WANG Duan, LIU Xiangli, et al. Preliminary study on the fermentation process and biological activity of strawberry enzyme optimization by response surface method[J]. Science and Technology of Food Industry,2018,39(9):143−148.]
CUI Guoting, WANG Duan, LIU Xiangli, et al. Preliminary study on the fermentation process and biological activity of strawberry enzyme optimization by response surface method[J]. Science and Technology of Food Industry, 2018, 39(9): 143−148.
|