LI Xuerui, YAN Jing, LIU Xiuwei, et al. Optimization of Coffee Micro-water Degumming Process Based on Principal Component Analysis[J]. Science and Technology of Food Industry, 2023, 44(18): 217−224. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100096.
Citation: LI Xuerui, YAN Jing, LIU Xiuwei, et al. Optimization of Coffee Micro-water Degumming Process Based on Principal Component Analysis[J]. Science and Technology of Food Industry, 2023, 44(18): 217−224. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100096.

Optimization of Coffee Micro-water Degumming Process Based on Principal Component Analysis

More Information
  • Received Date: October 11, 2022
  • Available Online: July 12, 2023
  • To optimize the micro-water degumming process, this study investigated the effects of different processing techniques including mechanical peeling degumming+sun drying (A), mechanical peeling degumming+heat pump drying (B), manual peeling+heat pump drying (C), mechanical peeling degumming+water soaking degumming+heat pump drying (D), and manual peeling+water soaking degumming+heat pump drying (E) on the content of aroma precursors (protein and crude fat), taste-producing substances (caffeine, chlorogenic acid and caffeic acid), and volatile substances in green coffee beans. The results showed that compared to the manual peeling degumming+heat pump treatment group, the mechanical peeling degumming+heat pump drying group exhibited a significantly increased chlorogenic acid and caffeic acid contents in raw coffee beans, a significantly decreased (P<0.05) protein content with the increase in pectin residue (P<0.05). The content of crude fat and caffeic acid in raw coffee beans significantly higher in the mechanical peeling degumming+water soaking degumming+heat pump drying treatment group than in the mechanical peeling degumming+heat pump drying treatment group (P<0.05). Chlorogenic acid and caffeic acid contents in raw coffee beans were significantly higher in the mechanical peeling degumming+heat pump drying treatment group than in the mechanical peeling degumming+sun-drying treatment group (P<0.05). The contents of protein, crude fat, and caffeine in green coffee beans were lower in manual peeling+heat pump drying (C) and manual peeling+water soaking degumming+heat pump drying (E). The protein content in green coffee beans was the highest (13.71%) in mechanical peeling degumming+water soaking degumming+heat pump drying(D), and its crude fat content was only second (9.84%) to mechanical peeling degumming+sun drying (A). According to the overall score of quality indicators from high to low, the 5 treatment groups were ranked as D>B>A>E>C. The PCA score plot grouped samples B and D into one quadrant, and the samples in other treatment groups were located in different quadrants, which indicated a relatively small difference in the quality of raw coffee beans between the mechanical peeling degumming+heat pump drying group and mechanical peeling degumming+water soaking degumming+heat pump drying treatment group, while the difference in quality of raw coffee beans among the other treatment groups was dramatic. The analysis results of the relative content of volatile substances showed that raw coffee beans in the manual peeling+water soaking degumming+heat pump drying treatment group contained more main flavor compounds such as n-octadecane (4.80 µg/g), damascenone (1.85 µg/g), dibutyl phthalate (20.28 µg/g) than those in the mechanical peeling degumming+water soaking degumming+heat pump drying treatment group (1.63, 0.94, 4.07 µg/g), and compounds in raw coffee beans exhibited an overall decreasing trend with decreasing pectin residues. Taken together, rich flavor could be obtained from green coffee beans by taking advantage of pectin, and the optimal comprehensive quality could be obtained from the micro-water degumming process, namely, mechanical peeling degumming+water soaking degumming+heat pump drying. The findings would provide new perspectives for the processing of the Yunnan fine coffee beans and fermented flavor coffee beans.
  • loading
  • [1]
    阿里新服务研究中心. 阿里: 2022中国咖啡产业发展报告[R]. 北京: 2022

    Ali New Service Research Center. Alibaba: Coffee industry developmenreport in China[R]. Beijing: 2022.
    [2]
    肖兵, 匡钰, 李维锐. 云南小粒种咖啡初加工工艺技术改进与创新[J]. 中国热带农业,2018(6):4−19. [XIAO B, KUANG Y, LI W R. Improvement and innovation of primary processing technology of Yunnan coffee[J]. Tropical Agriculture in China,2018(6):4−19. doi: 10.3969/j.issn.1673-0658.2018.06.001

    XIAO B, KUANG Y, LI W R. Improvement and innovation of primary processing technology of Yunnan Coffee[J]. Tropical Agriculture in China, 2018(6): 4. doi: 10.3969/j.issn.1673-0658.2018.06.001
    [3]
    黄家雄, 孙有祥, 吕玉兰, 等. 咖啡机械脱胶技术研发与推广[J]. 中国热带农业,2018(3):65−68. [HUANG J X, SUN Y X, LV Y L, et al. Development and promotion of coffee mechanical degumming technology[J]. China Tropical Agriculture,2018(3):65−68. doi: 10.3969/j.issn.1673-0658.2018.03.020

    [HUANG J X, SUN Y X, LV Y L, et al. Development and promotion of coffee mechanical degumming technology[J]. China Tropical Agriculture, 2018(3): 65-68. doi: 10.3969/j.issn.1673-0658.2018.03.020
    [4]
    文志华. 生态型脱皮脱胶组合机用于咖啡初加工的若干技术问题[J]. 云南农业科技,2002(5):45−47. [WEN Z H. Some technical problems of ecological peeling and degumming combination machine for coffee primary processing[J]. Yunnan Agricultural Science and Technology,2002(5):45−47.

    WEN Z H. Some technical problems of ecological peeling and degumming combination machine for coffee primary processing[J]. Yunnan Agricultural Science and Technology, 2002(5): 45-47.
    [5]
    毕晓菲, 胡发广, 陈雷, 等. 中国云南与巴西咖啡初级加工现状比较及存在问题探讨[J]. 农产品加工(学刊),2014,355(6):68−70. [BI X F, HU G F, CHEN L, et al. Current situation and existing problem of coffee primary processing in Brazil and Yunnan, China[J]. Academic Periodical of Farm Products Processing,2014,355(6):68−70.

    BI X F, HU G F, CHEN L, et al. Current situation and existing problem of coffee primary processing in Brazil and Yunnan, China[J]. Academic Periodical of Farm Products Processing, 2014, 355(6): 68-70.
    [6]
    陈治华, 林兴文, 罗映山, 等. 机械热风干燥技术在云南咖啡初加工中的应用[J]. 中国热带农业,2014,57(2):1−2. [CHEN Z H, LIN X W, LUO Y S, et al. Application of mechanical hot air drying technology in the preliminary processing of Yunnan coffee[J]. China Tropical Agriculture,2014,57(2):1−2.

    CHEN Z H, LIN X W, LUO Y S, et al. Application of mechanical hot air drying technology in the preliminary processing of Yunnan coffee[J]. China Tropical Agriculture, 2014, 57(2): 1-2.
    [7]
    KULAPICHITR F, BOROMPICHAICHARTKUL C, SUPPAVORASATIT I, et al. Impact of drying process on chemical composition and key aroma components of Arabica coffee[J]. Food Chemistry,2019,291(S1):49−58.
    [8]
    BOREM F M, MARQUES E R, ALVES E. Ultrastructural analysis of drying damage in coffee endosperm cells[J]. Biosystems Engineering,2008,99(1):62−66. doi: 10.1016/j.biosystemseng.2007.09.027
    [9]
    FADAI N T, PLEASE C P, GORDER R. Modelling structural deformations in a roasting coffee bean[J]. International Journal of Non-Linear Mechanics,2019,110:123−130. doi: 10.1016/j.ijnonlinmec.2018.12.006
    [10]
    POISSON L, AUZANNEAU N, MESTDAGH F, et al. New insight into the role of sucrose in the generation of α-diketones upon coffee roasting[J]. Journal of Agricultural and Food Chemistry,2018,66(10):2422−2431. doi: 10.1021/acs.jafc.6b04849
    [11]
    LEE K G, SHIBAMOTO T. Analysis of volatile components isolated from Hawaiian green coffee beans (Coffea arabica L.)[J]. Flavour and Fragrance Journal,2010,17(5):349−351.
    [12]
    程可, 董文江, 胡荣锁, 等. 微波真空干燥对咖啡豆风味成分的影响研究[J]. 热带作物学报,2018,39(2):180−191. [CHEN K, DONG W J, HU R S, et al. Effect of microwave vacuum drying on flavor components of coffee beans[J]. Chinese Journal of Tropical Crops,2018,39(2):180−191.

    CHEN K, DONG W J, HU R S, et al. Effect of microwave vacuum drying on flavor components of coffee beans[J]. Chinese Journal of Tropical Crops, 2018, 39(2): 180-191.
    [13]
    董文江, 胡荣锁, 宗迎, 等. 利用HS-SPME/GC-MS法对云南主产区生咖啡豆中挥发性成分萃取与分析研究[J]. 农学学报,2018,8(9):71−79. [DONG W J, HU R S, ZONG Y, et al. Application of HS-SPME/GC-MS in volatile components analysis of green coffee beans from major production areas in Yunnan province[J]. Journal of Agriculture,2018,8(9):71−79.

    DONG W J, HU R S, ZONG Y, et al. Application of HS-SPME/GC-MS in volatile components analysis of green coffee beans from major production areas in Yunnan province[J]. Journal of Agriculture, 2018, 8(9): 71-79.
    [14]
    KNOPP S, BYTOF G, SELMAR D. Influence of processing on the content of sugars in green Arabica coffee beans[J]. European Food Research and Technology,2006,223(2):195−201. doi: 10.1007/s00217-005-0172-1
    [15]
    吴建, 蒋快乐, 时玲, 等. 云南小粒种咖啡初加工工艺发展现状及趋势[J]. 中国农机化学报,2021,42(11):205−213. [WU J, JIANG K L, SHI L, et al. Development status and trend of Yunnan Arabica coffee primary processing[J]. Journal of Chinese Agricultural Mechanization,2021,42(11):205−213.

    WU J, JIANG K L, SHI L, et al. Development status and trend of Yunnan Arabica Coffee primary processing[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 205-213.
    [16]
    陈云兰, 陈治华, 蒋快乐, 等. 不同初加工工艺对云南阿拉比卡咖啡品质的影响[J]. 现代食品科技,2019,35(2):149−156. [CHEN Y L, CHEN Z H, JIANG K L, et al. Influence of different primary process on the quality of Arabica coffee in Yunnan province[J]. Modern Food Science and Technology,2019,35(2):149−156.

    CHEN Y L, CHEN Z H, JIANG K L, et al. Influence of different primary process on the quality of Arabica Coffee in Yunnan province[J]. Modern Food Science and Technology, 2019, 35(2): 149-156.
    [17]
    WANG X Y, WANG Y B, HU G L, et al. Review on factors affecting coffee volatiles: from seed to cup[J]. Journal Science Food Agricultural,2022,102(4):1341−1352. doi: 10.1002/jsfa.11647
    [18]
    董文江, 杨静园, 陆敏泉, 等. 热泵干燥对生咖啡豆活性物质和挥发性成分的影响研究[J]. 现代食品科技,2016,32(4):141−149. [DONG W J, YANG J Y, LU M Q, et al. Effect of heat pump drying on the bioactive components and volatile compounds in green coffee beans[J]. Modern Food Science and Technology,2016,32(4):141−149.

    DONG W J, YANG J Y, LU M Q, et al. Effect of heat pump drying on the bioactive components and volatile compounds in green coffee beans[J]. Modern Food Science and Technology, 2016, 32(4): 141-149.
    [19]
    GILBERTO P, DAO N, ANTONIO J, et al. Exploring the impacts of postharvest processing on the aroma formation of coffee beans-A review[J]. Food Chemistry,2019,272(1):441−452.
    [20]
    胡红. 小粒咖啡脱胶技术研究[J]. 科学技术创新,2019(32):39−40. [HU H. Study on degumming technology of coffee[J]. Science and Technology Innovation,2019(32):39−40. doi: 10.3969/j.issn.1673-1328.2019.32.022

    HU H. Study on degumming technology of coffee[J]. Science and technology innovation, 2019(32): 39-40. doi: 10.3969/j.issn.1673-1328.2019.32.022
    [21]
    国家粮食局科学研究院. GB/T 5511-2008 谷物和豆类 氮含量测定和粗蛋白质含量计算 凯氏法[S]. 北京: 中国标准出版社, 2008

    Research Institute of Science, State Food Administration. GB/T 5511-2008 Determination of nitrogen content and calculation of crude protein content in cereals and legumes. Kjeldahl method[S]. Beijing: China Standard Press, 2008.
    [22]
    国家饲料质量监督检验中心(北京). GB/T 6433-2006 饲料中粗脂肪的测定[S]. 北京: 中国标准出版社, 2006

    National Feed Quality Supervision and Inspection Center (Beijing). GB/T 6433-2006 Determination of crude fat in feed[S]. Beijing: China Standard Press, 2006.
    [23]
    华南热带农产品加工设计研究所. GB/T 19182-2003 咖啡 咖啡因含量的测定 高效液相色谱法[S]. 北京: 中国标准出版社, 2003

    South China Institute of Tropical Agricultural Products Processing and Design. GB/T 19182-2003 Determination of caffeine in coffee by high performance liquid chromatography[S]. Beijing: China Standard Press, 2003.
    [24]
    中国烟草总公司郑州烟草研究院, 中国烟草标准化研究中心. YC/T 202-2006 烟草及烟草制品 多酚类化合物绿原酸、莨菪亭和芸香苷的测定[S]. 北京: 中国标准出版社, 2003

    Zhengzhou Tobacco Research Institute, China Tobacco Corporation, China Tobacco Standardization Research Center. YC/T 202-2006 Determination of polyphenolic compounds chlorogenic acid, hyoscyamine and rutin in tobacco and tobacco products[S]. Beijing: China Standards Press, 2003.
    [25]
    刘帅帅. 烤烟GC/MS指纹图谱构建与验证[D]. 北京: 中国农业科学院, 2012

    LIU S S, Structure and validation of GC/MS fingerprint of Tobacco[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.
    [26]
    陈钰莹, 孙红波, 宋萧萧, 等. 咖啡苦味特性研究进展[J]. 食品科学,2020,41(9):285−293. [CHEN Y Y, SUN H B, SONG X X, et al. Recent advances in research the bitterness of coffee[J]. Food Science,2020,41(9):285−293. doi: 10.7506/spkx1002-6630-20190423-304

    CHEN Y Y, SUN H B, SONG X X, et al. Recent advances in research the bitterness of coffee[J]. Food Science, 2020, 41(9): 285-293. doi: 10.7506/spkx1002-6630-20190423-304
    [27]
    HIDALGO F J, DELGADO R M, ZAMORA R. Degradation of asparagine to acrylamide by carbonyl-amine reactions initiated by alkadienals[J]. Food Chemistry,2009,116(3):779−784. doi: 10.1016/j.foodchem.2009.03.020
    [28]
    董文江, 张丰, 赵建平, 等. 云南不同地区生咖啡豆的风味前体物质研究[J]. 现代食品科技,2016,32(1):290−296. [DONG W J, ZHANG F, ZHAO J P, et al. Flavor precursor compounds of green coffee beans from different geographical origins in Yunnan province[J]. Modern Food Science and Technology,2016,32(1):290−296. doi: 10.13982/j.mfst.1673-9078.2016.1.046

    DONG W J, ZHANG F, ZHAO J P, et al. Flavor precursor compounds of green coffee beans from different geographical origins in Yunnan province[J]. Modern Food Science and Technology, 2016, 32(1): 290-296. doi: 10.13982/j.mfst.1673-9078.2016.1.046
    [29]
    DAWIDOWICZ A L, TYPEK R. Transformation of chlorogenic acids during the coffee beans roasting process[J]. European Food Research and Technology,2017,243(3):379−390. doi: 10.1007/s00217-016-2751-8
    [30]
    刘意, 曾桂先, 宋凤兰, 等. 绿原酸稳定性研究[J]. 辽宁化工,2009,38(4):25−28. [LIU Y, ZENG G X, SONG F L, et al. Studies on the stability of Chlorogenic acid[J]. Liaoning Chemical Industry,2009,38(4):25−28.

    LIU Y, ZENG G X, SONG F L, et al. Studies on the stability of Chlorogenic acid[J]. Liaoning Chemical Industry, 2009, 38(4): 25-28.
    [31]
    李莎莎, 于娟, 谭淑瑜, 等. HPLC法测定不同产地咖啡中咖啡因、咖啡酸及绿原酸的含量[J]. 江西中医药大学学报,2017,29(1):90−93. [LI S S, YU J, TAN S Y, et al. Determination of caffeine, caffeic acid and chlorogenic acid in coffee beans from different origins by RP-HPLC[J]. Journal of Jiangxi University of TCM,2017,29(1):90−93.

    LI S S, YU J, TAN S Y, et al. Determination of caffeine, caffeic acid and chlorogenic acid in coffee beans from different origins by RP-HPLC[J]. Journal of Jiangxi University of TCM, 2017, 29(1): 90-93.
    [32]
    王茜. 基于热诱导的烘焙咖啡豆贮藏期风味品质变化规律研究[D]. 南京: 南京师范大学, 2019

    WANG Q. Study on the regular of flavor quality of roasted coffee beans during storage based on accelerated induction[D]. Nanjing: Nanjing Normal University, 2019.
    [33]
    朱攀攀, 马亚琴, 窦华亭, 等. 超声局部效应对咖啡酸稳定性及抗氧化性的影响[J]. 食品科学,2015,36(23):12−17. [ZHU P P, MA Y Q, DOU H T, et al. Effect of local ultrasound on stability and antioxidant capacity of caffeic acid in a model system[J]. Food Science,2015,36(23):12−17. doi: 10.7506/spkx1002-6630-201523003

    ZHU P P, MA Y Q, DOU H T, et al. Effect of local ultrasound on stability and antioxidant capacity of caffeic acid in a model system[J]. Food Science, 2015, 36(23): 12-17. doi: 10.7506/spkx1002-6630-201523003
    [34]
    DONG W, HU R, CHU Z, et al. Effect of different drying techniques on bioactive components, fatty acid. composition, and volatile profile of Robusta coffee beans[J]. Food Chemistry,2017,234(12):121−130.
    [35]
    于淼. 云南德宏地区咖啡豆的风味品质特性研究[D]. 大庆: 黑龙江八一农垦大学, 2017: 11-18

    YU M. Study on flavor quality of coffee beans in Dehong area of Yunnan[D]. Daqing: HeiLongjiang Bayi Agricultural University, 2017: 11-18.
    [36]
    POYRAZ I E, OZTURK N, KIYAN H T, et al. Volatile compounds of coffeaArabica L. Green and roasted beans[J]. Anadolu University Journal of Science and Technology,2016,5:31−35.
    [37]
    AKIYAMA M, MURAKAMI K, HIRANO Y, et al. Characterization of headspace aroma compounds of freshly brewed arabica coffees and studies on a characteristic aroma compound of ethiopian coffee[J]. Journal of Food Science,2008,73(5):335−346. doi: 10.1111/j.1750-3841.2008.00752.x

Catalog

    Article Metrics

    Article views (137) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return