Citation: | ZHANG Haifang, NA Ri, HAN Yumei, et al. Research Progress of Spectral Nondestructive Testing Technology in Traceability of Agricultural Products[J]. Science and Technology of Food Industry, 2023, 44(8): 17−25. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080091. |
[1] |
潘立刚, 张缙, 陆安祥, 等. 农产品质量无损检测技术研究进展与应用[J]. 农业工程学报,2008,24(S2):325−330. [PAN L G, ZHANG J, LU A X, et al. Research progress and application of nondestructive testing technology for agricultural product quality[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(S2):325−330.
|
[2] |
AFSAH HEJRI L, HAJEB P, ARA P, et al. A comprehensive review on food applications of terahertz spectroscopy and imaging[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(5):1563−1621. doi: 10.1111/1541-4337.12490
|
[3] |
EISENSTECKEN D, STÜRZ B, ROBATSCHER P, et al. The potential of near infrared spectroscopy (NIRS) to trace apple origin: Study on different cultivars and orchard elevations[J]. Postharvest Biology and Technology,2019,147:123−131. doi: 10.1016/j.postharvbio.2018.08.019
|
[4] |
张欣欣, 李尚科, 李跑, 等. 近红外光谱的不同产地柑橘无损鉴别方法[J]. 光谱学与光谱分析,2021,41(12):3695−3700. [ZHANG X X, LI S K, LI P, et al. Non-destructive identification methods of citrus of different origins in near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,41(12):3695−3700.
|
[5] |
LEIVA-VALENZUELA G A, LU R, AGUILERA J M. Assessment of internal quality of blueberries using hyperspectral transmittance and reflectance images with whole spectra or selected wavelengths[J]. Innovative Food Science & Emerging Technologies,2014,24:2−13.
|
[6] |
WANG L, LIU D, PU H, et al. Use of hyperspectral imaging to discriminate the variety and quality of rice[J]. Food Analytical Methods,2015,8(2):515−523. doi: 10.1007/s12161-014-9916-5
|
[7] |
谭峰, 才巧玲, 马志欣, 等. 基于拉曼光谱分析寒地水稻叶片的有机结构[J]. 江苏农业科学,2016,44(4):358−361. [TAN F, CAI Q L, MA Z X, et al. Analysis of the organic structure of coldland rice leaves based on Raman spectroscopy[J]. Jiangsu Agricultural Sciences,2016,44(4):358−361. doi: 10.15889/j.issn.1002-1302.2016.04.102
|
[8] |
李可, 闫路辉, 赵颖颖, 等. 拉曼光谱技术在肉品加工与品质控制中的研究进展[J]. 食品科学,2019,40(23):298−304. [LI K, YAN L H, ZHAO Y Y, et al. Research progress of Raman spectroscopy in meat processing and quality control[J]. Food Science,2019,40(23):298−304. doi: 10.7506/spkx1002-6630-20181130-358
|
[9] |
LI H, CHEN Q, ZHAO J, et al. Nondestructive detection of total volatile basic nitrogen (TVB-N) content in pork meat by integrating hyperspectral imaging and colorimetric sensor combined with a nonlinear data fusion[J]. LWT-Food Science and Technology,2015,63(1):268−274. doi: 10.1016/j.lwt.2015.03.052
|
[10] |
张丽华, 郝莉花, 李顺峰, 等. 基于支持向量机的近红外光谱技术快速鉴别掺假羊肉[J]. 食品工业科技,2015,36(23):289−293. [ZHAG L H, HAO L H, LI S F, et al. Near-infrared spectroscopy based on support vector machine to quickly identify adulterated lamb[J]. Science and Technology of Food Industry,2015,36(23):289−293.
|
[11] |
刘爽, 柴春祥. 近红外光谱技术在水产品检测中的应用进展[J]. 食品安全质量检测学报,2021,12(21):8590−8596. [LIU S, CHAI C X. Application progress of near infrared spectroscopy in aquatic product detection[J]. Journal of Food Safety & Quality,2021,12(21):8590−8596. doi: 10.3969/j.issn.2095-0381.2021.21.spaqzljcjs202121041
|
[12] |
马冬红, 王锡昌, 刘利平, 等. 近红外光谱技术在食品产地溯源中的研究进展[J]. 光谱学与光谱分析,2011,31(4):877−881. [MA D H, WANG X C, LIU L P, et al. Research progress of near-infrared spectroscopy in food origin traceability[J]. Spectroscopy and Spectral Analysis,2011,31(4):877−881. doi: 10.3964/j.issn.1000-0593(2011)04-0877-05
|
[13] |
马佳佳, 王克强. 水果品质光学无损检测技术研究进展[J]. 食品工业科技,2021,42(23):427−437. [MA J J, WANG K Q. Research progress of optical nondestructive testing for fruit quality[J]. Science and Technology of Food Industry,2021,42(23):427−437. doi: 10.13386/j.issn1002-0306.2020110235
|
[14] |
ZAREEF M, ARSLAN M, HASSAN M M, et al. Recent advances in assessing qualitative and quantitative aspects of cereals using nondestructive techniques: A review[J]. Trends in Food Science & Technology,2021,116:815−828.
|
[15] |
张保华, 李江波, 樊书祥, 等. 高光谱成像技术在果蔬品质与安全无损检测中的原理及应用[J]. 光谱学与光谱分析,2014,34(10):2743−2751. [ZHANG B H, LI J B, FAN S X, et al. Principle and application of hyperspectral imaging technology in nondestructive testing of quality and safety of fruits and vegetables[J]. Spectroscopy and Spectral Analysis,2014,34(10):2743−2751. doi: 10.3964/j.issn.1000-0593(2014)10-2743-09
|
[16] |
梁慧芳, 张惠芳, 从明芳, 等. 高光谱成像技术在纺织检测领域的研究进展[J]. 现代纺织技术,2022,30(6):211−218, 260. [LIANG H F, ZHANG H F, CONG M F, et al. Research progress of hyperspectral imaging in textile inspection[J]. Advanced Textile Technology,2022,30(6):211−218, 260.
|
[17] |
QIN J, CHAO K, KIM M S, et al. Hyperspectral and multispectral imaging for evaluating food safety and quality[J]. Journal of Food Engineering,2013,118(2):157−171. doi: 10.1016/j.jfoodeng.2013.04.001
|
[18] |
刘燕德, 靳昙昙. 拉曼光谱技术在农产品质量安全检测中的应用[J]. 光谱学与光谱分析,2015,35(9):2567−2572. [LIU Y D, JIN T T. Application of Raman spectroscopy in quality and safety detection of agricultural products[J]. Spectroscopy and Spectral Analysis,2015,35(9):2567−2572. doi: 10.3964/j.issn.1000-0593(2015)09-2567-06
|
[19] |
高振, 赵春江, 杨桂燕, 等. 典型拉曼光谱技术及其在农业检测中应用研究进展[J]. 智慧农业(中英文),2022,4(2):121−134. [GAO Z, ZHAO C J, YANG G Y, et al. Research progress on typical Raman spectroscopy and its application in agricultural detection[J]. Smart Agriculture,2022,4(2):121−134.
|
[20] |
GUO Z, CHEN P, YOSRI N, et al. Detection of heavy metals in food and agricultural products by surface-enhanced raman spectroscopy[J]. Food Reviews International,2021(4):1−22.
|
[21] |
XU Y, ZHONG P, JIANG A, et al. Raman spectroscopy coupled with chemometrics for food authentication: A review[J]. TrAC Trends in Analytical Chemistry,2020,131:116017. doi: 10.1016/j.trac.2020.116017
|
[22] |
马雪亭, 罗华平, 高峰, 等. 近红外光谱技术在苹果检测方面的研究与应用[J]. 食品安全质量检测学报,2022,13(13):4219−4227. [MA X T, LUO H P, GAO F, et al. Research and application of near-infrared spectroscopy in apple detection[J]. Journal of Food Safety & Quality,2022,13(13):4219−4227. doi: 10.3969/j.issn.2095-0381.2022.13.spaqzljcjs202213019
|
[23] |
苏学素, 张晓焱, 焦必宁, 等. 基于近红外光谱的脐橙产地溯源研究[J]. 农业工程学报,2012,28(15):240−245. [SU X S, ZHANG X Y, JIAO B N, et al. Study on the origin tracing of navel orange based on near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(15):240−245.
|
[24] |
马永杰, 郭俊先, 郭志明, 等. 基于近红外透射光谱及多种数据降维方法的红富士苹果产地溯源[J]. 现代食品科技,2020,36(6):303−309. [MA Y J, GUO J X, GUO Z M, et al. Origin traceability of red Fuji apple based on near-infrared transmission spectroscopy and multiple data dimensionality reduction methods[J]. Modern Food Science and Technology,2020,36(6):303−309.
|
[25] |
孙晓明, 陈小龙, 余向阳, 等. 基于近红外光谱分析技术的水蜜桃产地溯源[J]. 江苏农业学报,2020,36(2):507−512. [SUN X M, CHEN X L, YU X Y, et al. Origin traceability of peaches based on near-infrared spectroscopy[J]. Jiangsu Journal of Agricultural Sciences,2020,36(2):507−512. doi: 10.3969/j.issn.1000-4440.2020.02.035
|
[26] |
FU X, YING Y, ZHOU Y, et al. Application of probabilistic neural networks in qualitative analysis of near infrared spectra: Determination of producing area and variety of loquats[J]. Analytica Chimica Acta,2007,598(1):27−33. doi: 10.1016/j.aca.2007.07.032
|
[27] |
陈璐, 谷晓红, 王文博, 等. 近红外光谱技术识别沾化和陕西冬枣产地的研究[J]. 山东农业科学,2016,48(3):133−136. [CHEN L, GU X H, WANG W B, et al. Identification of winter jujube origin in Zhanhua and Shanxi by near infrared spectroscopy[J]. Shandong Agricultural Sciences,2016,48(3):133−136.
|
[28] |
雷渊雄, 夏阿林, 黄炜, 等. 基于近红外光谱结合化学计量学的转基因大豆产地判别[J]. 食品与发酵工业,2022,48(12):6. [LEI Y X, XIA A L, HUAG W, et al. Identification of transgenic soybean origin based on near-infrared spectroscopy combined with stoichiometry[J]. Food and Fermentation Industries,2022,48(12):6. doi: 10.13995/j.cnki.11-1802/ts.028608
|
[29] |
TEYE E, AMUAH C L Y, MCGRATH T, et al. Innovative and rapid analysis for rice authenticity using hand-held NIR spectrometry and chemometrics[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,217:147−154. doi: 10.1016/j.saa.2019.03.085
|
[30] |
李佳洁, 吴建虎, 张海波. 利用可见/近红外光谱技术对小米产地进行溯源研究[J]. 食品安全质量检测学报,2017,8(8):3037−3043. [LI J J, WU J H, ZHANG H B. The visible/near infrared spectroscopy was used to trace the origin of millet[J]. Journal of Food Safety & Quality,2017,8(8):3037−3043. doi: 10.3969/j.issn.2095-0381.2017.08.033
|
[31] |
赵海燕, 郭波莉, 魏益民, 等. 近红外光谱对小麦产地来源的判别分析[J]. 中国农业科学,2011,44(7):1451−1456. [ZHAO H Y, GUO B L, WEI Y M, et al. Discriminant analysis of wheat origin by near infrared spectroscopy[J]. Scientia Agricultura Sinica,2011,44(7):1451−1456. doi: 10.3864/j.issn.0578-1752.2011.07.018
|
[32] |
DOS SANTOS C A T, PÁSCOA R N M J, SARRAGUÇA M C, et al. Merging vibrational spectroscopic data for wine classification according to the geographic origin[J]. Food Research International,2017,102:504−510. doi: 10.1016/j.foodres.2017.09.018
|
[33] |
汤丽华, 刘敦华. 基于近红外光谱技术的枸杞产地溯源研究[J]. 食品科学,2011,32(22):175−178. [TANG L H, LIU D H. Research on the origin traceability of Lycium barbarum based on near-infrared spectroscopy[J]. Food Science,2011,32(22):175−178.
|
[34] |
WU T H, TUNG I C, HSU H C, et al. Quantitative analysis and discrimination of partially fermented teas from different origins using visible/near-infrared spectroscopy coupled with chemometrics[J]. Sensors,2020,20(19):5451. doi: 10.3390/s20195451
|
[35] |
王彬, 王巧华, 肖壮, 等. 基于可见-近红外光谱及随机森林的鸡蛋产地溯源[J]. 食品工业科技,2017,38(24):243−247. [WNAG B, WNAG Q H, XIAO Z, et al. Traceability of egg origin based on visible-near infrared spectroscopy and random forest[J]. Science and Technology of Food Industry,2017,38(24):243−247. doi: 10.13386/j.issn1002-0306.2017.24.047
|
[36] |
孙淑敏, 郭波莉, 魏益民, 等. 近红外光谱指纹分析在羊肉产地溯源中的应用[J]. 光谱学与光谱分析,2011,31(4):937−941. [SUN S M, GUO B L, WEI Y M, et al. Application of near-infrared spectral fingerprint analysis in traceability of mutton origin[J]. Spectroscopy and Spectral Analysis,2011,31(4):937−941. doi: 10.3964/j.issn.1000-0593(2011)04-0937-05
|
[37] |
GHIDINI S, VARRÀ M O, DALL'ASTA C, et al. Rapid authentication of European sea bass (Dicentrarchus labrax L.) according to production method, farming system, and geographical origin by near infrared spectroscopy coupled with chemometrics[J]. Food Chemistry,2019,280:321−327. doi: 10.1016/j.foodchem.2018.12.075
|
[38] |
SUN Y, LI Y, PAN L, et al. Authentication of the geographic origin of Yangshan region peaches based on hyperspectral imaging[J]. Postharvest Biology and Technology,2021,171:111320. doi: 10.1016/j.postharvbio.2020.111320
|
[39] |
TIAN Y, SUN J, ZHOU X, et al. Research on apple origin classification based on variable iterative space shrinkage approach with stepwise regression–support vector machine algorithm and visible-near infrared hyperspectral imaging[J]. Journal of Food Process Engineering,2020,43(8):e13432.
|
[40] |
张立欣, 杨翠芳, 陈杰, 等. 基于变量优选和近红外光谱技术的红富士苹果产地溯源[J]. 食品与发酵工业,2022,48(20):36−43. [ZHANG L X, YANG C F, CHEN J, et al. Origin tracing of red fuji apple based on variable selection and near infrared spectroscopy[J]. Food and Fermentation Industries,2022,48(20):36−43. doi: 10.13995/j.cnki.11-1802/ts.029991
|
[41] |
吉海彦, 任占奇, 饶震红. 基于高光谱成像技术的不同产地小米判别分析[J]. 光谱学与光谱分析,2019,39(7):2271−2277. [JI H Y, REN Z Q, RAO Z H. Discriminant analysis of millet from different regions based on hyperspectral imaging[J]. Spectroscopy and Spectral Analysis,2019,39(7):2271−2277.
|
[42] |
王庆国, 黄敏, 朱启兵, 等. 基于高光谱图像的玉米种子产地与年份鉴别[J]. 食品与生物技术学报,2014,33(2):163−170. [WANG Q G, HUANG M, ZHU Q B, et al. Identification of maize seed origin and year based on hyperspectral image[J]. Journal of Food Science and Biotechnology,2014,33(2):163−170.
|
[43] |
KIM M J, LIM J, KWON S W, et al. Geographical origin discrimination of white rice based on image pixel size using hyperspectral fluorescence imaging analysis[J]. Applied Sciences,2020,10(17):5794. doi: 10.3390/app10175794
|
[44] |
吴静珠, 李晓琪, 林珑, 等. 基于AlexNet卷积神经网络的大米产地高光谱快速判别[J]. 中国食品学报,2022,22(1):282−288. [WU J Z, LI X Q, L L, et al. Hyperspectral identification of rice origin based on AlexNet Convolutional neural network[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(1):282−288.
|
[45] |
MU Q, KANG Z, GUO Y, et al. Hyperspectral image classification of wolfberry with different geographical origins based on three-dimensional convolutional neural network[J]. International Journal of Food Properties,2021,24(1):1705−1721. doi: 10.1080/10942912.2021.1987457
|
[46] |
沈国芳, 黄俊航, 许麦成, 等. 基于近红外高光谱成像鉴别不同产地的红参[J]. 世界中医药,2021,16(23):3419−3423. [SHEN G F, HAUNG J H, XU M C, et al. Identification of red ginseng from different habitats based on near-infrared hyperspectral imaging[J]. World Chinese Medicine,2021,16(23):3419−3423. doi: 10.3969/j.issn.1673-7202.2021.23.003
|
[47] |
LIU Y, HUANG J, LI M, et al. Rapid identification of the green tea geographical origin and processing month based on near-infrared hyperspectral imaging combined with chemometrics[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2022,267:120537. doi: 10.1016/j.saa.2021.120537
|
[48] |
王靖, 丁佳兴, 郭中华, 等. 基于近红外高光谱成像技术的宁夏羊肉产地鉴别[J]. 食品工业科技,2018,39(2):250−254, 260. [WANG J, DING J X, GUO Z H, et al. Identification of mutton origin in ningxia based on near-infrared hyperspectral imaging[J]. Science and Technology of Food Industry,2018,39(2):250−254, 260.
|
[49] |
郑守国, 翁士状, 刘瑜凡, 等. 融合高光谱成像多类特征的名优牛肉种类鉴别[J]. 激光杂志,2021,42(8):57−61. [ZHENG S G, WNEG S Z, LIU Y F, et al. Identification of famous beef species based on multi-class hyperspectral imaging features[J]. Laser Journal,2021,42(8):57−61.
|
[50] |
卢诗扬, 张雷蕾, 潘家荣, 等. 拉曼光谱结合LSTM长短期记忆网络的樱桃产地鉴别研究[J]. 光谱学与光谱分析,2021,41(4):1177−1181. [LU S Y, ZHANG L L, PAN J R, et al. Raman spectroscopy combined with lstm long short-term memory network for cherry origin identification[J]. Spectroscopy and Spectral Analysis,2021,41(4):1177−1181.
|
[51] |
TRAKSELE L, SNITKA V. Surface-enhanced Raman spectroscopy for the characterization of Vaccinium myrtillus L. bilberries of the Baltic–Nordic regions[J]. European Food Research and Technology,2022,248(2):427−435. doi: 10.1007/s00217-021-03887-8
|
[52] |
DIB S R, SILVA T V, NETO J A G, et al. Raman spectroscopy for discriminating transgenic corns[J]. Vibrational Spectroscopy,2021,112:103183. doi: 10.1016/j.vibspec.2020.103183
|
[53] |
WANG Y, TAN F. Extraction and classification of origin characteristic peaks from rice Raman spectra by principal component analysis[J]. Vibrational Spectroscopy,2021,114:103249. doi: 10.1016/j.vibspec.2021.103249
|
[54] |
孙娟, 张晖, 王立, 等. 基于拉曼光谱的大米快速分类判别方法[J]. 食品与机械,2016,32(1):41−45. [SUN J, ZAHNG H, WANG L, et al. Rapid classification and discrimination method of rice based on Raman spectroscopy[J]. Food & Machinery,2016,32(1):41−45.
|
[55] |
HE S, LIU X, ZHANG W, et al. Discrimination of the Coptis chinensis geographic origins with surface enhanced Raman scattering spectroscopy[J]. Chemometrics and Intelligent Laboratory Systems,2015,146:472−477. doi: 10.1016/j.chemolab.2015.07.002
|
[56] |
MAGDAS D A, GUYON F, BERGHIAN-GROSAN C, et al. Challenges and a step forward in honey classification based on Raman spectroscopy[J]. Food Control,2021,123:107769. doi: 10.1016/j.foodcont.2020.107769
|
[57] |
杜馨, 孙晓荣, 刘翠玲, 等. 拉曼光谱结合偏最小二乘法对食用油品质快速检测研究[J]. 中国酿造,2019,38(12):171−174. [DU X, SUN X R, LIU C L, et al. Study on rapid detection of edible oil quality by Raman spectroscopy combined with partial least squares method[J]. China Brewing,2019,38(12):171−174. doi: 10.11882/j.issn.0254-5071.2019.12.034
|
[58] |
BOYACI İ H, UYSAL R S, TEMIZ T, et al. A rapid method for determination of the origin of meat and meat products based on the extracted fat spectra by using of Raman spectroscopy and chemometric method[J]. European Food Research and Technology,2014,238(5):845−852. doi: 10.1007/s00217-014-2168-1
|
[59] |
YAZGAN N N, GENIS H E, BULAT T, et al. Discrimination of milk species using Raman spectroscopy coupled with partial least squares discriminant analysis in raw and pasteurized milk[J]. Journal of the Science of Food and Agriculture,2020,100(13):4756−4765. doi: 10.1002/jsfa.10534
|