Citation: | LI Zhigang, ZHANG Chaohui, TAN Hai, et al. Enhancing cAMP Fermentation Formation via Glutathione and Auxiliary Energy Substance Coupling Addition[J]. Science and Technology of Food Industry, 2021, 42(20): 119−125. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010246. |
[1] |
Argyrousi E K, Heckman P R, Prickaerts J, et al. Role of cyclic nucleotides and their downstream signaling cascades in memory function: Being at the right time at the right spot[J]. Neuroscience and Biobehavioral Reviews,2020,113:12−38. doi: 10.1016/j.neubiorev.2020.02.004
|
[2] |
Wang D C, Qi J Z, Han W, et al. Kanamycin-induced production of 2’,3’-cyclic AMP in Escherichia coli[J]. Biochemical and Biophysical Research Communications,2020,527(4):854−860. doi: 10.1016/j.bbrc.2020.04.144
|
[3] |
Dong J, Fu X M, Wang P F, et al. Construction of industrial baker's yeast with high level of cAMP[J]. Journal of Food Biochemistry,2019,43(7):1−7.
|
[4] |
Chen Y, Li S Y, Xiong J, et al. The mechanisms of citrate on regulating the distribution of carbon flux in the biosynthesis of uridine 5’-monophosphate by Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,2010,86:75−81. doi: 10.1007/s00253-009-2287-y
|
[5] |
Zhang H, Zhu J Z, Zhu X C, et al. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10[J]. Bioresource Technology,2012,116:241−246. doi: 10.1016/j.biortech.2011.11.085
|
[6] |
李志刚, 陈宝峰, 张中华, 等. 辅助能量物质强化环磷酸腺苷发酵合成机制[J]. 中国生物工程杂志,2020,40(1/2):102−108. [Li Z G, Chen B F, ZHANG Z H, et al. The physiological mechanism for enhanced cyclic adenosine monophosphate biosynthesis by auxiliary energy substance[J]. China Biotechnology,2020,40(1/2):102−108.
|
[7] |
Chen S X, Chu J, Zhuang Y P, et al. Enhancement of inosine production by Bacillus subtilis through suppression of carbon overflow by sodium citrate[J]. Biotechnology Letters,2005,27:689−692. doi: 10.1007/s10529-005-4686-1
|
[8] |
Wang Y L, Wang D H, Wei G Y, et al. Improved co-production of S-adenosylmethionine and glutathione using citrate as an auxiliary energy substrate[J]. Bioresource Technology,2013,131:28−32. doi: 10.1016/j.biortech.2012.10.168
|
[9] |
Chen X C, Song H, Fang T, et al. Enhanced cyclic adenosine monophosphate production by Arthrobacter A302 through rational redistribution of metabolic flux[J]. Bioresource Technology,2010,101:3159−3163. doi: 10.1016/j.biortech.2009.12.081
|
[10] |
Xia J, Xu Z X, Xu H, et al. The regulatory effect of citric acid on the co-production of poly(ε-lysine) and poly(L-diaminopropionic acid) in Streptomyces albulus PD-1[J]. Bioprocess and Biosystems Engineering,2014,37:2095−2103. doi: 10.1007/s00449-014-1187-4
|
[11] |
李志刚, 陈宝峰, 方智博, 等. 基于柠檬酸盐与次黄嘌呤偶合添加的环磷酸腺苷发酵工艺[J]. 食品与发酵工业,2018,44(11):154−158. [Li Z G, Chen B F, Fang Z B, et al. A novel fermentation process for cyclic adenosine monophosphate production based on citrate coupling hypoxanthine addition in pulses[J]. Food and Fermentation Industries,2018,44(11):154−158.
|
[12] |
González-Siso M I, Garcia-Leiro A, Tarrio N, et al. Sugar metabolism, redox balance and oxidative stress response in the respiratory yeast Kluyveromyces lactis[J]. Microbial Cell Factories,2009,8:46−49. doi: 10.1186/1475-2859-8-46
|
[13] |
Yan P, Sun H B, Lu P Q, et al. Enhancement of ε-poly-L-lysine synthesis in Streptomyces by exogenous glutathione[J]. Bioprocess and Biosystems Engineering,2018,41:129−134. doi: 10.1007/s00449-017-1849-0
|
[14] |
Li S, Ji J Y, Hu S J, et al. Enhancement of ε-poly-L-lysine production in Streptomyces griseofuscus by addition of exogenous astaxanthin[J]. Bioprocess and Biosystems Engineering,2020,43:1813−1821. doi: 10.1007/s00449-020-02372-y
|
[15] |
李志刚, 顾阳, 陈宝峰, 等. 硝酸盐促进环磷酸腺苷发酵合成的生理机制研究[J]. 食品工业科技,2021,42(1):115−120. [Li Z G, Gu Y, Chen B F, et al. Physiological mechanism for enhanced cyclic adenosine monophosphate biosynthesis by sodium nitrate in Arthrobacter sp. CCTCC M2013431[J]. Science and Technology of Food Industry,2021,42(1):115−120.
|
[16] |
Niu H Q, Wang J Z, Zhuang W, et al. Comparative transcriptomic and proteomic analysis of Arthrobacter sp CGMCC 3584 responding to dissolved oxygen for cAMP production[J]. Scientific Reports,2018,8(1):1246−1249. doi: 10.1038/s41598-017-18889-4
|
[17] |
Hatzinger P, Palmer P, Smith R, et al. Applicability of tetrazolium salts for the measurement of respiratory activity and viability of groundwater bacteria[J]. Journal of Microbiological Methods,2003,52(1):47−58. doi: 10.1016/S0167-7012(02)00132-X
|
[18] |
Huang J C, Zhong Y J, Liu J, et al. Metabolic engineering of tomato for high-yield production of astaxanthin[J]. Metabolic Engineering,2013,17:59−67. doi: 10.1016/j.ymben.2013.02.005
|
[19] |
Liu C B, Pan F, Li Y, et al. A combined approach of generalized additive model and bootstrap with small sample sets for fault diagnosis in fermentation process of glutamate[J]. Microbial Cell Factories,2016,15:1−6. doi: 10.1186/s12934-015-0402-6
|
[20] |
徐若烊, 王大慧, 许宏庆, 等. 丙酮酸钠促进S-腺苷蛋氨酸和谷胱甘肽联合高产及其生理机制[J]. 食品工业科技,2018,39(2):113−118. [Xu R Y, Wang D H, Xu H Q, et al. Sodium pyruvate improves the co-production of S-adenosylmethionine and glutathione and its physiological mechanism[J]. Science and Technology of Food Industry,2018,39(2):113−118.
|
[21] |
Hara K, Kondo A. ATP regulation in bioproduction[J]. Microbial Cell Factories,2015,14(1):198−207. doi: 10.1186/s12934-015-0390-6
|
[22] |
Chen H L, Cao X T, Zhu N Q, et al. A stepwise control strategy for glutathione synthesis in Saccharomyces cerevisiae based on oxidative stress and energy metabolism[J]. World Journal of Microbiology and Biotechnology,2020,36(8):1−8.
|
[23] |
Shao H, Tu Y, Wang Y J, et al. Oxidative stress response of Aspergillus oryzae induced by hydrogen peroxide and menadione sodium bisulfite[J]. Microorganisms,2019,7:225−237. doi: 10.3390/microorganisms7080225
|
[24] |
Angelova M B, Pashova S B, Spasova B K, et al. Oxidative stress response of filamentous fungi induced by hydrogen peroxide and paraquat[J]. Mycological Research,2005,109(2):150−158. doi: 10.1017/S0953756204001352
|
[25] |
Satowa D, Fujiwara R, Uchio S, et al. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply[J]. Biotechnology and Bioengineering,2020,117(7):1−8.
|
[26] |
许曼, 江贤章, 黄建忠, 等. 强化类球红细菌辅因子NADPH再生以提高法尼醇的产量[J]. 生物工程学报,2020,36(1):90−99. [Xu M, Jiang X Z, Huang J Z, et al. Reinforcement of Rhodobacter sphaeroides cofactor NADPH to increase the production of farnesol[J]. Chinese Journal of Biotechnology,2020,36(1):90−99.
|
[27] |
Zeng X, Chen X S, Gao Y, et al. Continuously high reactive oxygen species generation decreased the specific ε-poly-L-lysine formation rate in fed-batch fermentation using glucose and glycerol as a mixed carbon source[J]. Process Biochemistry,2015,50:1993−2003. doi: 10.1016/j.procbio.2015.09.012
|
[28] |
Li Y, Hugenholtz J, Abee T, et al. Glutathione protects Lactococcus lactis against oxidative stress[J]. Applied and Environmental Microbiology,2003,69:5739−5745. doi: 10.1128/AEM.69.10.5739-5745.2003
|
[29] |
Penninckx M J. An overview on glutathione in Saccharomyces versus non-conventional yeasts[J]. FEMS Yeast Research,2002,2:295−305.
|