SHI Yue, WANG Jinxiang, LI Xuepeng, et al. Screening of Calcium-enriched Lactic Acid Bacteria and the Effect of Culture Conditions on Calcium-enriched [J]. Science and Technology of Food Industry, 2021, 42(8): 125−132. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070123.
Citation: SHI Yue, WANG Jinxiang, LI Xuepeng, et al. Screening of Calcium-enriched Lactic Acid Bacteria and the Effect of Culture Conditions on Calcium-enriched [J]. Science and Technology of Food Industry, 2021, 42(8): 125−132. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070123.

Screening of Calcium-enriched Lactic Acid Bacteria and the Effect of Culture Conditions on Calcium-enriched

More Information
  • Received Date: July 12, 2020
  • Available Online: January 28, 2021
  • In order to screen for lactic acid bacteria with strong calcium conversion and enrichment ability (for subsequent fermentation of fish bone paste), this paper studied the growth ability, acid production ability and calcium accumulation ability of seven lactic acid bacteria(Lactobacillus plantarum CY1-1, Lactobacillus plantarum Z7, Pediococcus pentosaceus DBY2-5-1, Lactobacillus casei D400, Lactobacillus oryzae DL10, Lactobacillus acidophilus DL12, Lactobacillus sake YP4-5) and their composite strains. The effects of calcium ion concentration, growth time, pH, and temperature on the calcium-enrichment capacity of the primary strains were studied, and the differences in the surface structure of the bacteria before and after the enrichment were observed by atomic force microscope, and the morphological changes of lactic acid bacteria and the mechanism of calcium absorption were studied. The results showed that lactic acid bacteria with the highest calcium enrichment were Lactobacillus plantarum CY1-1 and Lactobacillus plantarum Z7. The composite strains with the best enrichment ability were the combination of Lactobacillus plantarum CY1-1 and Lactobacillus acidophilus DL12, Lactobacillus plantarum Z7 and Lactobacillus sake YP4-5. Compared with the single strain, the calcium enrichment in those two composite strains increased by 6.76 and 21.69 mg/g, respectively. The enrichment ability in the stable phase was better than the logarithmic phase, the optimal concentration of calcium ion was 1.2 mg/mL, the optimal pH of Z7 was 6, Z7+YP4-5, CY1-1, and CY1-1+DL12 were 7.2, the optimal temperature of the Z7+YP4-5 group was 37 ℃, the remaining groups were 40 ℃. Atomic force microscopy observed significant differences in the cell surface structure before and after calcium enrichment by lactic acid bacteria. The above results showed that the single strain with the strongest calcium-accumulating ability was Lactobacillus plantarum CY1-1, and the composite strain were Z7+YP4-5; lactic acid bacteria could effectively adsorb calcium ions on the surface of the bacteria.
  • loading
  • [1]
    Wu W M, He L C, Liang Y H, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chemistry,2019,284(30):80−89.
    [2]
    Tang S W, Dong S Y, Chen M, et al. Preparation of a fermentation solution of grass fish bones and its calcium bioavailability in rats[J]. Food & Function,2018.
    [3]
    韩克光, 庞丰平, 曹靖, 等. 羊骨酶解液的植物乳杆菌发酵[J]. 生物工程学报,2018,34(6):945−955.
    [4]
    Hu L L, Zhao Y Y, Qin X Q, et al. Optimization of fermentation of porcine bone powder by Lactic acid bacteria for enhanced free calcium content[J]. Food Science,2010(7):3483−3489.
    [5]
    徐颖, 邬淑芳, 杨芙莲, 等. 盐胁迫促进鼠李糖乳杆菌富硒的效果[J]. 食品科学,2020,41(6):179−183. doi: 10.7506/spkx1002-6630-20190221-129
    [6]
    张青松. 乳酸菌对锌的富集特性及富锌乳酸菌对小鼠结肠炎的缓解作用[D]. 无锡: 江南大学, 2018: 1−43.
    [7]
    翟齐啸. 乳酸菌减除镉危害的作用及机制研究[D]. 无锡: 江南大学, 2015: 1−110.
    [8]
    周垚卿, 董静雯, 何强. 鱼类主要副产物的提取与利用[J]. 食品安全质量检测学报,2019,10(13):4284−4289. doi: 10.3969/j.issn.2095-0381.2019.13.043
    [9]
    袁美兰, 赵利, 刘华, 等. 鱼头鱼骨的综合利用研究进展[J]. 现代农业科技,2015(18):284−286, 288. doi: 10.3969/j.issn.1007-5739.2015.18.165
    [10]
    吉莉莉, 魏艳, 何丹, 等. 发酵香肠中分离纯化的三株乳酸菌产酸特性研究[J]. 中国调味品,2020,45(2):36−39. doi: 10.3969/j.issn.1000-9973.2020.02.009
    [11]
    陈铭. 草鱼骨乳酸菌发酵液的制备及钙生物利用率的研究[D]. 青岛: 中国海洋大学, 2018: 1−70.
    [12]
    陈宇凌, 陈银元, 刘安倩, 等. 泡菜中高耐镉乳酸菌的选育及吸附特性[J]. 食品与发酵工业,2019(14):27−33.
    [13]
    张付云, 李云冰, 杨晴宇, 等. 用螠蛏贝壳制备乳酸菌富集钙的工艺[J]. 食品研究与开发,2012,33(8):7−10. doi: 10.3969/j.issn.1005-6521.2012.08.003
    [14]
    殷娜, 严小玉, 马珊, 等. 常压室温等离子体诱变选育高产酸植物乳杆菌[J]. 中国酿造,2020,39(1):77−81. doi: 10.11882/j.issn.0254-5071.2020.01.015
    [15]
    刘文群, 邓泽元, 徐尔尼, 等. 保加利亚乳杆菌富集锌的条件研究[J]. 食品与发酵工业,2006,32(8):59−62. doi: 10.3321/j.issn:0253-990X.2006.08.015
    [16]
    Mrvčić J, Šolić E, Butorac A, et al. The effect of metal ions supplementation on growth and binding capacity of lactic acid bacteria[C]. Hrvatska znanstvena bibliografija i MZOS-Svibor, 2011: 61−67.
    [17]
    鲁笛, 缪元浩, 张邑衡等. 4株乳酸菌之间的相互作用比较[J]. 现代农业科技,2019(20):226−232. doi: 10.3969/j.issn.1007-5739.2019.20.125
    [18]
    Vig K, Megharaj M, Sethunathan N. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: A review[J]. Advances in Environmental Research,2003,8(1):121−135. doi: 10.1016/S1093-0191(02)00135-1
    [19]
    赵佳伟, 敖晓琳, 赵珂. 金属离子对乳酸菌生物膜形成的影响及其机制研究进展[J]. 食品科学,2019,40(9):341−346. doi: 10.7506/spkx1002-6630-20180308-101
    [20]
    Tobin J M, Cooper D G, Neufeld R J. The effects of cation competition on metal adsorption by Rhizopus arrhizus biomass[J]. Biotechnology & Bioengineering,1988,31(3):282−293.
    [21]
    Hantke K. Bacterialzinc uptake and regulators[J]. Current Opinion in Microbiology,2005,8(2):196−202. doi: 10.1016/j.mib.2005.02.001
    [22]
    Araúz C, Afton S, Wrobel K, et al. Study on the protective role of selenium against cadmium toxicity in lactic acid bacteria: An advanced application of ICP-MS[J]. Journal of Hazardous Materials,2008,153(3):1157−1164. doi: 10.1016/j.jhazmat.2007.09.075
    [23]
    Fazeli M, Hassanzadeh P, Alaei S. Cadmium chloride exhibits a profound toxic effect on bacterial microflora of the mice gastrointestinal tract[J]. Human and Experimental Toxicology,2011,30(2):152−159. doi: 10.1177/0960327110369821
    [24]
    Ibrahim F, Halttunen T, Tahvonen R, et al. Probiotic bacteria as potential detoxificationtools: assessing their heavy metal binding isotherms[J]. Canadian journal of microbiology,2006,52(9):877−885. doi: 10.1139/w06-043
    [25]
    Halttunen T, Salminen S, Tahvonen R. Rapid removal of lead and cadmium from water by specific lactic acid bacteria[J]. International Journal of Food Microbiology,2007,114(1):30−45. doi: 10.1016/j.ijfoodmicro.2006.10.040
    [26]
    Abdulgawad I A I. Fermentation of Nile Tilapia (Oreochromis niloticus) wastes using Lactobacillus plantarum for the production of Lactic acid and fertilizer[J]. International Journal of Waste Resources,2017,6 (4):1−7.
    [27]
    Speranza, B, Racioppo, et al. Autochthonous lactic acid bacteria with probiotic aptitudes as starter cultures for fish-based products[J]. Food Microbiol,2017(65):244−253.
    [28]
    Mrvčic’ J, Prebeg T, Barišic’ L, et al. Zinc binding by lactic acid bacteria[J]. Food Technology & Biotechnology,2009,47(4):381−388.
    [29]
    李芳菲, 夏秀芳, 孔保华. 原子力显微镜特点及其在食品中的研究进展[J]. 食品研究与开发,2016,37(20):216−220. doi: 10.3969/j.issn.1005-6521.2016.20.052
    [30]
    张晓清. 原子力显微镜在生物领域中的应用[J]. 微生物学通报,2008,35(4):0595−0601.
    [31]
    葛林. 原子力显微镜力谱技术及其在微观生物力学领域的应用[J]. 力学进展,2018,48(1):461−540.
    [32]
    郭兴峰, 赵文婷, 廖小军, 等. 酸性条件下热处理对果胶流变和结构特性的影响[J]. 食品科学,2018,577(12):4 7−53.

Catalog

    Article Metrics

    Article views (381) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return