YANG Xu. Research on the Stability of Chaenomeles sinensis (Thouin) Koehne Cloudy Iuice[J]. Science and Technology of Food Industry, 2021, 42(8): 194−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060293.
Citation: YANG Xu. Research on the Stability of Chaenomeles sinensis (Thouin) Koehne Cloudy Iuice[J]. Science and Technology of Food Industry, 2021, 42(8): 194−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060293.

Research on the Stability of Chaenomeles sinensis (Thouin) Koehne Cloudy Iuice

More Information
  • Received Date: June 23, 2020
  • Available Online: January 27, 2021
  • The higher requirements were put forward for the stability of Chaenomeles sinensis (Thouin) Koehne cloudy juice, becausehighcontentof insoluble solids was easy to form precipitation during product storage. To improve the storage quality of product, the effects of juice extraction method, stabilizer selection and sterilization method on juice stability were studied with the fresh Chaenomeles sinensis (Thouin) Koehne as raw material. Results indicated that juice processed by beating had significantly increased insoluble solid contents (36.56 ± 1.27)% than squeezing, which was more conducive to the improvement of aroma and nutrients. Selection and compounding of stabilizers experiments showed that viscosity and suspension stability were (23.55 ± 0.78) mPa·s and (94.19 ± 0.91)%, and the weighted stability was highest, when the optimal dosage of xanthan gum, guar gum, and gellan gum were 0.02%, 0.02% and 0.10% respectively. The cloudy juice was sterilized by HTST (121 ℃/0.1 MPa/30 s), which could well keep the total plate count in juice below 2 lg CFU/mL during storage period (≤40 d).HTST juice maintained the better suspension stability (65.17 ± 0.83)% than pasteurization juice (90 ℃/15 min), and its sensory qualities were well controlled during storage (sensory scores>8). This study provides a theoretical basis for improving the stability of juice in processing and storage.
  • loading
  • [1]
    杨海月, 晏艳, 顾战省, 等. 光皮木瓜籽含油率的快速测定方法研究[J]. 中国粮油学报,2015,30(9):123−126. doi: 10.3969/j.issn.1003-0174.2015.09.024
    [2]
    Kim C, Subedi L, Oh J, et al. Bioactive triterpenoids from the twigs of Chaenomeles sinensis[J]. Journal of Natural Products,2017,80(4):1134−1140. doi: 10.1021/acs.jnatprod.7b00111
    [3]
    Reiko S, Sanae K, Yohko K S, et al. A polyphenol-rich extract from Chaenomeles sinensis (Chinese quince) inhibits influenza A virus infection by preventing primary transcription in vitro[J]. Journal of Ethnopharmacology,2013,146(3):866−872. doi: 10.1016/j.jep.2013.02.020
    [4]
    尹震花, 赵晨, 张娟娟, 等. 光皮木瓜的化学成分及药理活性研究进展[J]. 中国实验方剂学杂志,2017,23(9):221−229.
    [5]
    张瑞, 何静仁, 蔡小双, 等. 四种方法提取光皮木瓜籽油及成分分析的比较研究[J]. 粮食与油脂,2015,28(8):56−61. doi: 10.3969/j.issn.1008-9578.2015.08.016
    [6]
    Du H, Wu J, Li H, et al. Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment[J]. Food Chemistry,2013,141:4260−4268. doi: 10.1016/j.foodchem.2013.06.109
    [7]
    Cha K, Song C, Lee J, et al. Chaenomeles sinensis Koehne extract suppresses the development of atopic dermatitis-like lesions by regulating cytokine and filaggrin expression in NC/Nga mice[J]. International Journal of Medical Sciences,2019,16(12):1604−1613. doi: 10.7150/ijms.37854
    [8]
    Zhang R, Zhan S, Li S, et al. Anti-hyperuricemic and nephroprotective effects of extracts from Chaenomeles sinensis (Thouin) Koehne in hyperuricemic mice[J]. Food & Function,2018,9(11):5778−5790.
    [9]
    Kwon Y, Choi S, Kim C, et al. Effect of Chaenomeles sinensis extract on choline acetyltransferase activity and trimethyltin-induced learning and memory impairment in mice[J]. Chemical & Pharmaceutical Bulletin, 2015, 63(12): 1076−1080.
    [10]
    纪桢, 许佳林, 白巧秀, 等. 三种抗氧化剂对光皮木瓜籽油的抗氧化效果研究[J]. 粮油食品科技,2018,26(6):29−32.
    [11]
    Qin Z, Ma Y, Liu H, et al. Structural elucidation of lignin-carbohydrate complexes (LCCs) from Chinese quince (Chaenomeles sinensis) fruit[J]. International Journal of Biological Macromolecules,2018,116:1240−1249. doi: 10.1016/j.ijbiomac.2018.05.117
    [12]
    安玉红. 木瓜果醋的生产技术研究[D]. 重庆: 西南大学, 2010: 9-10.
    [13]
    张文娟, 周书来, 胡洋, 等. 光皮木瓜低糖果酱的研制[J]. 科技与企业,2014(23):184−187. doi: 10.3969/j.issn.1004-9207.2014.23.171
    [14]
    向进乐, 罗磊, 马丽苹, 等. 木瓜酒和木瓜醋发酵工艺及其有机酸组成分析[J]. 食品科学,2016,37(23):191−195. doi: 10.7506/spkx1002-6630-201623032
    [15]
    焦圣龙. 光皮木瓜澄清果汁加工工艺研究[D]. 泰安: 山东农业大学, 2018: 13−20.
    [16]
    张淑娟, 徐怀德, 纪学芳, 等. 微波结合抑制剂抑制光皮木瓜汁褐变研究[J]. 中国食品学报,2013,13(3):140−145.
    [17]
    夏其乐, 曹艳, 邢建荣, 等. 浑浊型蓝莓果汁饮料的加工技术[J]. 浙江农业科学,2018,59(10):1888−1891.
    [18]
    陈祖满. 浑浊型蓝莓果汁饮料稳定性研究[J]. 食品与发酵工业,2014,40(5):252−254.
    [19]
    孙俊杰, 付复华, 李绮丽. 复合酶解制备甜橙全果浊汁工艺优化[J]. 食品与机械,2017,33(8):189−193.
    [20]
    杨旭, 朱新鹏, 吕远平. 加工工艺对浑浊型银耳饮料稳定性的影响[J]. 食品与机械,2016,32(8):196−201.
    [21]
    中华人民共和国国家卫生和计划生育委员会. GB 4789.2—2016食品安全国家标准 食品微生物学检验 菌落总数测定[S]. 北京: 中国标准出版社, 2016.
    [22]
    张佳艳, 林欢, 秦战军. 西番莲果渣酶解工艺的研究[J]. 食品研究与开发,2016,37(19):95−99. doi: 10.3969/j.issn.1005-6521.2016.19.023
    [23]
    Gouw V, Jung J, Zhao Yanyun. Functional properties, bioactive compounds, and in vitro gastrointestinal digestion study of dried fruit pomace powders as functional food ingredients[J]. LWT-Food Science and Technology,2017,80:136−144. doi: 10.1016/j.lwt.2017.02.015
    [24]
    赵晓丹, 刘夏衍, 陈芳, 等. 超高压和高温短时杀菌对绿色复合果蔬汁的杀菌效果与品质影响[J]. 食品工业科技,2019,40(5):114−123.
    [25]
    彭思嘉, 侯志强, 徐贞贞, 等. 超高压和高温短时杀菌对樱桃汁品质的影响[J]. 食品工业科技,2018,39(17):71−78.
    [26]
    中华人民共和国国家卫生和计划生育委员会. GB 7101-2015 食品安全国家标准 饮料[S]. 北京: 中国标准出版社, 2015.
    [27]
    王亚男, 朱华平, 李文钊, 等. 酶-热浸提法提高野樱莓出汁率的工艺优化[J]. 食品工业科技,2019,40(4):146−152.

Catalog

    Article Metrics

    Article views (247) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return