Abstract:
Addressing the issue of gel degradation in frozen surimi triggered by protein denaturation, this study employed a conventional commercial cryoprotectant blend (4% sucrose+4% sorbitol) as a control to examine the effects of adding Hsian-tsao polysaccharide HTP (0%, 1%, 1.5%, 2%, 4%, w/w) on the structural and physicochemical properties (including surface hydrophobicity, turbidity, SDS-PAGE profiles, and fluorescence spectroscopy) of myofibrillar proteins (MP) as well as the gel characteristics (including inferred from fourier transform infrared spectroscopy, electronic tongue analysis, water-holding capacity, gel firmness, and cooking loss) of frozen surimi during 0, 30, and 60 d of storage. The findings demonstrated that, as compared to control, incorporating HTP reduced the surface hydrophobicity and turbidity of frozen MP, inhibiting their aggregation. SDS-PAGE analysed and fluorescence spectroscopy confirmed the efficacy of HTP in alleviating the denaturation and aggregation of frozen MP. Additionally, HTP addition was shown to augment gel strength, enhance water-holding capabilities, and reduce cooking losses, phenomena linked to HTP-induced alterations in protein structure, specifically an increase in
β-sheet content and a decrease in surface hydrophobicity. Notably, HTP did not significantly alter the taste attributes (umami, saltiness, and richness) of frozen surimi gels (
P>0.05). As HTP increased, the enhancement of gel properties in frozen surimi followed a trend of initial improvement, which then plateaus and declines. Specifically, after 30 and 60 d of freezing, the gel strength of surimi with 1.5% HTP added increased 2.17-fold and 2.09-fold, water-holding capacity rose by 11.06% and 17.47%, and cooking loss rates diminished by 22.55% and 19.56%, respectively (
P<0.05). Concurrently, the surface hydrophobicity of MP declined by 31.84% and 29.43%, paralleled by a decrease in turbidity by 52.81% and 2.43% (
P<0.05). Consequently, adding HTP can mitigate the extent of MP denaturation in frozen surimi and improve its gel properties, thereby providing a theoretical basis for the application of HTP in frozen surimi products.