Effect and Mechanism of Jujube on Food Intake and Intestinal Inflammatory Injury in Type 2 Diabetic Rats
-
摘要: 目的:探究大枣对2型糖尿病(T2DM)大鼠摄食及肠道炎症损伤的影响作用及机制。方法:SD大鼠随机分为空白组、T2DM模型组、大枣低剂量组(1.575 g/kg)、大枣高剂量组(9.45 g/kg),除空白组外,其余各组大鼠以高脂高糖饲料+链脲佐菌素(STZ)诱导T2DM模型,成模后给药组每日灌胃不同浓度的大枣溶液,连续4周。观察、记录大鼠的一般情况及摄食量、血糖等;检测大鼠血清中炎症因子白细胞介素1β(IL-1β)、肿瘤坏死因子-α(TNF-α)、胰高血糖素样肽-1(GLP-1)、酪酪肽(PYY)水平,同时观察大鼠回肠病理切片组织损伤情况及细胞凋亡情况,并检测大鼠肠道中炎症与凋亡相关基因核因子-κB p65(NF-κB p65)、含半胱氨酸的天冬氨酸蛋白水解酶-3(Caspase3)的表达,以及炎症与凋亡相关蛋白Toll样受体4(TLR4)、NF-κB p65、磷酸化NF-κB p65(p-NF-κB p65)、BCL2相关X蛋白(Bax)、B淋巴细胞瘤-2(Bcl-2)、Pro Caspase3及Cleaved Caspase3的水平。结果:与模型组相比,给药组大鼠摄食量极显著降低(P<0.01),血清中TNF-α、IL-1β水平均极显著降低(P<0.01),GLP-1水平极显著升高(P<0.01),其中PYY水平在大枣高剂量组极显著升高(P<0.01);回肠组织炎症损伤有所改善,大枣高剂量组回肠组织细胞凋亡率极显著降低(P<0.01);给药组肠道NF-κB p65、Caspase3 mRNA和NF-κB p65、Cleaved Caspase3蛋白表达水平均显著下调(P<0.01,P<0.05),大枣高剂量组p-NF-κB p65、Pro Caspase3和Bax/Bcl-2蛋白表达显著下调(P<0.05,P<0.01)。结论:大枣能够增加肠道抑食性食欲激素GLP-1、PYY水平进而减少T2DM大鼠摄食量,其作用机制可能与大枣减轻T2DM大鼠肠道炎症,修复肠道损伤,恢复肠道激素的分泌有关。Abstract: Objective: To investigate the effects and underlying mechanisms of jujube on feeding behavior and intestinal inflammatory injury in rats with type 2 diabetes mellitus (T2DM). Methods: SD rats were randomly assigned to four groups: a blank control group, a T2DM model group, a low-dose jujube group (1.575 g/kg), and a high-dose jujube group (9.45 g/kg). Apart from the blank group, rats in the remaining groups were subjected to a high-fat, high-sugar diet combined with streptozotocin (STZ) administration to induce the T2DM model. Following successful model establishment, rats in the jujube groups received daily gavage with different concentrations of jujube solution for 4 consecutive weeks. General conditions, food intake, and blood glucose levels were monitored and recorded. Additionally, serum levels of inflammatory factors including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) were assayed. Histopathological analysis of the ileum was performed to assess tissue damage and cell apoptosis, and the expressions of inflammation- and apoptosis-related genes such as nuclear factor NF-κB p65 (NF-κB p65) and cysteine-aspartic acid protease-3 (Caspase3), as well as related proteins including Toll-like receptor 4 (TLR4), NF-κB p65, phosphorylated NF-κB p65 (p-NF-κB p65), BCL2-associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), Pro Caspase3, and Cleaved Caspase3 were measured in the intestinal tissue. Results: Compared with the model group, the rats in the administration group exhibited a highly significant reduction in food intake (P<0.01). Serum levels of TNF-α and IL-1β were significantly decreased (P<0.01), while GLP-1 levels were markedly elevated (P<0.01). Notably, PYY levels showed a highly significant increase in the high-dose jujube group (P<0.01). Additionally, the inflammatory injury in ileal tissue improved, with a significant reduction in the apoptosis rate of ileal cells in the high-dose jujube group (P<0.01). Furthermore, the expression levels of intestinal NF-κB p65, Caspase3 mRNA, as well as NF-κB p65 and Cleaved Caspase3 proteins were significantly downregulated in the administration group (P<0.05, P<0.01). Additionally, the high-dose jujube group exhibited significant downregulation of p-NF-κB p65, Pro Caspase3, and the Bax/Bcl-2 protein ratio (P<0.05, P<0.01). Conclusion: Jujube has the potential to elevate intestinal anorexigenic hormones GLP-1 and PYY, thereby reducing food intake in T2DM rats. This effect may be mediated through jujube's ability to alleviate intestinal inflammation, repair intestinal damage, and restore intestinal hormone secretion in T2DM rats.
-
Keywords:
- jujube /
- type 2 diabetes /
- appetite /
- intestine /
- inflammation /
- apoptosis
-
随着生活水平的提高和生活方式的改变,近年来2型糖尿病(Type 2 diabetes mellitus,T2DM)的发病率逐年攀升,T2DM及紧随其后的并发症不仅带给患者身体上的痛苦,还给个人和社会带来巨大的经济负担,已成为全球性的严重公共卫生问题[1]。多食是T2DM患者的典型症状之一,过量的进食常常增加能量蓄积,进一步加重代谢异常。此外,患者还常常出现食物依赖、暴饮暴食,以及因无法控制的食欲在过量进食后产生焦虑抑郁等不良情绪[2−3],影响疾病的治疗,因此,抑制食欲对限制营养的摄入、减轻代谢异常以及更好地管理和治疗T2DM有着十分积极的意义[4]。
食欲抑制药物是目前研究的热点,但目前的食欲抑制药物大多针对于严重肥胖患者的减重治疗[5−6],且多存在诸如疗效有限、价格昂贵以及严重不良反应等问题[7],因此,一些天然的、副作用少的、有明确T2DM适用指征的食欲抑制药物还有待进一步研究与开发。在临床实践中,已有学者从中医角度,认为T2DM食欲亢进的根本病因在于脾虚不能为胃行津液,胃阳燥化,火热内生而最终导致的“脾虚胃亢”,而运用大剂大枣(60~90 g)以“补脾抑胃”之法可解决糖尿病患者食欲旺盛的问题,且无升糖之弊,临床疗效显著[8−10],课题组前期研究显示,以人参、大枣、甘草组成的常用甘味组方,对STZ造模的T2DM大鼠摄食有着较明显的抑制作用,能调节食欲激素的水平[11]。基于此,本研究将结合前人经验,开展动物实验,探究大枣影响T2DM大鼠摄食的确切作用及可能机制。
大枣(Ziziphus jujuba Mill.)是鼠李科枣属植物枣的成熟果实,作为常用中药能发挥益气健脾、养血安神、缓和药性等作用,现代药理学研究发现,大枣中含有多糖、三萜、皂苷、生物碱、黄酮等多种活性成分,有抗炎、抗氧化、抗肿瘤、增强免疫等多种功效[12−13],近年来,大枣运用于治疗T2DM的可行性也逐渐得到证实,研究认为其发挥治疗作用的机制可能与抗炎作用有关[14−16]。
本研究以高脂高糖饲料喂养联合链脲佐菌素(Streptozotocin,STZ)腹腔注射诱导的T2DM大鼠为研究对象,以大枣溶液灌胃治疗,对T2DM大鼠摄食量以及胰高血糖素样肽-1(Glucagon-like peptide-1,GLP-1)、酪酪肽(Peptide tyrosine-tyrosine,PYY)水平的变化进行研究,以验证大枣对T2DM大鼠摄食量和食欲激素的确切影响;并研究大鼠肠道组织炎症损伤状态和细胞凋亡的变化,检测肠道炎症及凋亡相关因子的表达,以进一步探索其机制,为临床运用大枣治疗T2DM食欲旺盛提供理论和实验基础,并为大枣的开发和利用提供新的思路。
1. 材料与方法
1.1 材料与仪器
SPF级雄性SD大鼠 60只,体质量200±20 g,购于四川省达硕生物科技有限公司,动物合格编号:SCXK(川)2020-030;大鼠基础饲料(玉米、小麦、大豆、鱼粉、鸡肉粉及多种氨基酸和矿物组成,营养成分为粗蛋白质20.8%、粗脂肪5.6%、碳水化合物58%)、高脂高糖饲料(45%脂肪供能,主要原料配比:基础饲料43.5%、猪油17.5%、蔗糖12%、全脂奶粉10%、酪蛋白13%、实验动物预混料2%、磷酸氢钙2%) 江苏省协同生物工程有限公司,饲料生产许可证:苏饲证(2019)01008;新疆大枣 安徽康和中药科技有限公司提供,经成都中医药大学药学院马云桐教授鉴定为符合国家中药材临床应用标准的合格品;链脲佐菌素(STZ) 美国Sigma公司;PYY、TNF-α、IL-1β、GLP-1 Elisa试剂盒、TUNEL试剂盒 武汉Elabscience公司;NF-κB p65、Phospho-NF-κB p65、Bcl-2、Pro Caspase3、Cleaved-Caspase3(ASP175)、β-Actin抗体 美国Affinity公司;TLR4、Bax抗体 武汉Servicebio公司;山羊抗兔二抗-HRP、山羊抗小鼠二抗-HRP 杭州Multi sciences公司;DAPI 赛维尔生物科技有限公司。
安稳+code血糖仪、血糖试纸 长沙三诺生物;AUY120分析天平 日本Shimadzu;μQuant光谱仪 美国BioTek;Stepone plus荧光定量PCR仪 美国ABI;ChemiScope 6100化学发光成像系统 上海勤翔科学仪器有限公司;Pannoramic SCAN Ⅱ病理切片扫描仪 匈牙利3DHISTECH Kft。
1.2 实验方法
1.2.1 大枣溶液的制备
取实验所需大枣制备大枣冻干剂,以10倍量纯化水提取2次(每次40 min,提取温度100 ℃),随后将大枣溶液合并,过滤,减压浓缩,冷冻干燥后得到。每周取实验所需大枣冻干剂,以清洁烧杯装盛,加2倍量100 ℃纯水,以干净玻璃棒搅拌并闷泡5 min使其充分溶解,随后使用旋转蒸发仪浓缩为2 g/mL的大枣溶液,最后将得到的药液分装至清洁避光密封的容器内,并保存于4 ℃冰箱以备后续实验使用。
1.2.2 分组、造模和取材
SD大鼠,饲养于成都中医药大学十二桥校区中内实验室动物房(许可证号:SYXK(川)2017-179),动物房温度:22±3 ℃,湿度:60%±10%,实验方案经成都中医药大学伦理委员会审核批准,实验动物伦理审查编号:2021DL-018。
适应性喂养2周后,以随机数字表法分为12只空白对照组(Control group,CG)和48只糖尿病造模组,分别开始饲喂基础饲料和高脂高糖饲料。6周后,提前12 h禁食不禁水,测定大鼠体质量后对糖尿病造模组腹腔内快速注射剂量为35 mg/kg的链脲佐菌素(Streptozotocin,STZ)[17−18],72 h后采用大鼠尾静脉采血法测定大鼠血糖,以FBG≥16.7 mmol/L者为T2DM模型大鼠[17]。随机选取血糖符合成模标准的36只大鼠,以随机数字表法分为模型组(Model group,Model)、大枣低剂量组(Low-dose jujube group,LG)、大枣高剂量组(High-dose jujube group,HG),每组12只。按临床常用剂量和临床经验用药剂量[9,19],通过人与大鼠的等效剂量比值换算[20],大枣低剂量组和大枣高剂量组分别以1.575、9.45 g/kg的剂量每日灌胃生药浓度为2 g/mL的大枣溶液,模型组、空白组每日给予等量纯水灌胃,每周根据大鼠体重调整灌胃量,连续灌胃4周,灌胃期间空白组给予基础饲料,其余组均给予高脂高糖饲料,各组大鼠均自由饮水采食。4周后,前一晚禁水不禁食,次日以50 mg/kg的1%戊巴比妥钠麻醉后腹主动脉取血,室温静置2 h后,以3500 r/min 离心10 min,分离血清,−80 ℃保存备用,随后将大鼠处死,于冰上取回肠组织,一份浸泡于4%甲醛溶液,一份装入无菌冷冻管,−80 ℃保存备用。
1.2.3 大鼠一般情况观察及摄食量、血糖的测定
给药期间观察记录各组大鼠精神状态、皮毛色泽、二便等一般情况;每日同一时间称量加入饲料量和剩余饲料量,并计算各组平均摄食量[21];每周同一时间提前禁食不禁水12 h,使用血糖仪以尾静脉采血法测定空腹血糖。
1.2.4 ELISA法检测血清GLP-1、PYY、TNF-α、IL-1β水平
以3000 r/min,15 min离心大鼠血清,取上清液,按照Elisa试剂盒使用说明书分别检测血清GLP-1、PYY、白细胞介素1β(Interleukin-1β,IL-1β)、肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)水平。
1.2.5 HE染色
将固定于4%甲醛溶液的回肠组织放入脱水机内依次经从高到低的乙醇梯度进行脱水,随后石蜡包埋,切片,切片厚度3 μm。将切片进行HE染色,中性树胶封片,并在40×物镜显微镜下进行图像采集和分析。
1.2.6 TUNEL染色
大鼠回肠组织切片根据TUNEL细胞凋亡检测试剂盒说明书进行回肠细胞染色,TUNEL染色可将凋亡细胞核染成红色,DAPI染色正常细胞核显蓝色,于显微镜下观察细胞凋亡情况,每个样本随机选择3个视野拍照,使用Image-pro plus 6.0计数,并计算细胞凋亡率,TUNEL染色细胞凋亡率(%)=TUNEL染色细胞数/总细胞数×100。
1.2.7 qPCR法检测回肠组织NF-κB p65、Caspase3 mRNA表达水平
取大鼠回肠组织,按照RNA试剂盒说明书提取回肠组织总RNA,随后取含2 μg RNA的溶液按照试剂盒说明书比例依次加入试剂。设置PCR仪程序:25 ℃维持10 min,然后42 ℃维持15 min,然后85 ℃维持5 min后快速冷却至室温。引物由上海生工生物工程股份有限公司提供,引物序列见表1。扩增体系20 μL:2×qPCR MasterMix 10 μL、上游引物0.6 μL(7.5 μmol/L)、下游引物0.6 μL(7.5 μmol/L)、反转录产物2 μL,双蒸水6.8 μL。设定反应条件:先95 ℃、10 min预变性,再95 ℃、10 s变性,60 ℃、30 s退火延伸,循环40次。β-Actin为内参,以2−ΔΔCT计算各组相对表达水平,ΔΔCT=ΔCT(实验组样本)-ΔCT(对照组样本)。
表 1 引物序列表Table 1. Primer sequence list基因 引物序列(5’~3’) 长度
(bp)NCBI
基因IDβ-Actin F:TGTCACCAACTGGGACGATA
R:GGGGTGTTGAAGGTCTCAAA165 81822 NF-κB p65 F:GGATGGCTTCTATGAGGCTGAACTC
R:CTTGCTCCAGGTCTCGCTTCTTC98 309165 Caspase3 F:GCGGTATTGAGACAGACAGTGGAAC
R:GCGGTAGAGTAAGCATACAGGAAGTC91 25402 1.2.8 WB检测回肠组织TLR4、NF-κB p65、p-NF-κB p65、Bcl-2、Bax、Pro Caspase3、Cleaved Caspase3蛋白表达水平
取各组大鼠回肠组织,加入RIPA裂解液,冰上匀浆后,12000 r/min离心10 min,收集上清液;BCA法测蛋白浓度,随后于蛋白样品中加入相应量5×SDS上样缓冲液(总蛋白溶液体积:5×SDS上样缓冲液=4:1),95 ℃金属浴中加热5 min使蛋白变性,经SDS-PAGE电泳分离、转膜、封闭,分别加入一抗NF-κB p65(1:1000)、TLR4(1:1000)、Bcl-2(1:1000)、Bax(1:1000)、Pro Caspase3(1:1000)各4 μL,p-NF-κB p65(1:500)、Cleaved Caspase3(1:500)各8 μL,β-Actin(1:5000)0.8 μL孵育后4 ℃孵育过夜,TBST洗脱3次,再加入HRP标记的二抗(1:10000)0.4 μL孵育1 h,TBST洗脱3次,以化学发光法显影并于化学发光成像系统下采集图像,随后进行灰度分析,以β-Actin为内参,计算目的蛋白相对表达量。
1.3 数据处理
使用Graphpad prism9统计作图软件对数据结果进行统计分析,所有计量资料以均数±标准差(±s)表示。多个样本均数间的比较,数据满足正态方差齐时采用单因素方差分析(One-way ANOVA),不满足则使用非参数检验;以P<0.05为显著统计学差异,P<0.01为极显著统计学差异。
2. 结果与分析
2.1 大鼠一般情况及摄食量、血糖情况
空白对照组大鼠一般情况良好;模型组大鼠逐渐出现毛色晦暗无泽,萎黄杂乱,摄食、饮水量明显增加,尿量增多明显,大便质地偏稀,精神倦怠,喜静卧,形体消瘦等情况,血糖始终保持较高水平(图1b);给药组大鼠相较于模型组毛色、二便、精神状态等情况均稍好,血糖未见明显上升,且低剂量组在给药后期还表现出一定的下降趋势。在摄食量方面(图1a),T2DM模型组大鼠的摄食量极显著高于空白对照组(P<0.01);给药后,给药组摄食量均显著低于模型组(P<0.05,P<0.01);此外,给药后大枣高剂量组摄食量极显著低于大枣低剂量组(P<0.01)。说明大枣能够减少T2DM大鼠的摄食量,改善大鼠一般状态,但并不升高T2DM大鼠血糖水平,且这种作用在大枣高剂量组中表现更为突出。
2.2 大枣对大鼠食欲激素GLP-1、PYY水平的影响
食欲激素可通过血液循环或迷走神经传递,将信号传递到下丘脑食欲中枢,从而发挥对摄食的调控作用[22],GLP-1、PYY是由广泛分布于肠道各段的L细胞所分泌的有着食欲抑制作用的代表性食欲激素,可通过延缓胃排空、减少肠蠕动、增加饱腹感等来发挥抑制食欲的作用,还能调节葡萄糖、能量等的摄入[23−24],研究发现T2DM患者身上多可见这两种食欲激素的分泌下降[25−27]。本研究结果同样显示,与空白对照组相比,模型组GLP-1、PYY水平均有极显著的下降(P<0.01);给药后,各给药组GLP-1水平均较模型组出现极显著升高(P<0.01),且大枣高剂量组GLP-1水平与低剂量组间有着极显著差异(P<0.01);此外,大枣高剂量组血清PYY水平也较模型组极显著升高(P<0.01)(图2)。提示大枣可以恢复T2DM大鼠肠道对食欲激素GLP-1、PYY的分泌。
2.3 大枣对大鼠血清炎症因子水平的影响
机体广泛的慢性炎症状态被认为与T2DM发生关系密切,炎症因子可使胰岛素信号转导被扰乱,甚至直接损伤胰岛β细胞[28]。如图3所示,与空白对照组相比,T2DM大鼠血清IL-1β、TNF-α水平均极显著上升(P<0.01);给药后,大枣高剂量组、低剂量组大鼠血清IL-1β、TNF-α水平较模型组极显著下降(P<0.01)。给药后各组血清炎症因子水平下降,说明大枣能够减轻T2DM大鼠的炎症状态。
2.4 大枣对大鼠肠道病理的影响
肠道慢性炎症被认为是T2DM发生的前提:慢性低度炎症导致肠道内菌群水平失调,屏障完整性受损,脂多糖大量释放进入血液循环,引发代谢性内毒素血症,进一步诱导机体发生广泛的炎症反应[29−31]。本研究中,空白对照组粘膜层、粘膜下层、肌层和外膜组织结构完整,细胞排列整齐,未见有明显的组织病理损伤改变;病理损伤以模型组最严重,模型组粘膜层、粘膜下层、肌层和外膜结构可辨,粘膜层结构破坏,近肠腔侧粘膜层细胞坏死、脱落,固有层裸露,见炎性细胞浸润,毛细血管轻微淤血;给药组大鼠肠道炎症浸润较模型组减轻,偶见粘膜层上皮细胞坏死脱落,肠道组织破坏程度减轻,给药组间相比,大枣高剂量组肠道病理状态优于大枣低剂量组(图4),进一步证明大枣对T2DM大鼠肠道炎症有着明显抑制作用,在肠道炎症损伤方面起着一定修复作用。
2.5 大枣对大鼠肠道细胞凋亡情况的影响
通常,细胞凋亡是机体自身调节的过程,但肠道炎症状态下,大量炎症因子产生并进一步募集,损害肠道粘膜以及固有层,因此常见肠道上皮细胞凋亡显著增加及功能失调[32−33]。TUNEL染色结果显示(图5~图6),模型组大鼠回肠细胞凋亡率较空白对照组极显著升高(P<0.01),给药后,大枣高剂量组细胞凋亡率较模型组极显著降低(P<0.01),较低剂量组显著降低(P<0.05),表明T2DM状态下大鼠肠道的确出现了明显的细胞凋亡,但大剂量大枣能够对肠道细胞凋亡起到较好的抑制作用。
2.6 大枣对大鼠回肠NF-κB p65、Caspase3 mRNA表达的影响
核因子-κB(Nuclear factor kappa B,NF-κB)是介导炎症的主要转录因子,NF-κB p65是其关键亚单位,对NF-κB的激活起着重要的作用[34]。本研究结果显示,模型组大鼠回肠组织NF-κB p65 mRNA表达水平较空白对照组极显著上调(P<0.01);给药组相较于模型组表达水平均有极显著下调(P<0.01);并且,大枣高剂量组较大枣低剂量组NF-κB p65 mRNA下调极为显著(P<0.01)(图7a)。
含半胱氨酸的天冬氨酸蛋白水解酶(Cysteinyl aspartate specific proteinase,Caspase)-3,是凋亡的最终效应因子,激活后可导致DNA裂解从而引起细胞凋亡[35]。本研究中,模型组Caspase3 mRNA表达极显著上调(P<0.01);给药组相较于模型组表达均出现极显著下调(P<0.01),并且给药组间也表现出显著差异,大枣高剂量组较低剂量组下调极显著(P<0.01)(图7b)。
2.7 大枣对大鼠回肠炎症及凋亡相关蛋白表达的影响
Toll样受体4(Toll like receptor 4,TLR4)/NF-κB信号通路是介导肠道炎症反应的重要通路之一[36−37]。本实验WB结果显示,各组间TLR4蛋白水无显著差异(P>0.05),但模型组NF-κB p65以及磷酸化NF-κB p65(p-NF-κB p65)蛋白表达较空白对照组出现极显著上调(P<0.01);给药后,大枣低剂量组和大枣高剂量组肠道NF-κB p65蛋白表达均极显著下调(P<0.01),而仅大枣高剂量组p-NF-κB p65表达显著下调(P<0.05)(图8~图9)。提示大枣能通过调节NF-κB及其下游通路来发挥对肠道炎症的抑制作用。
Bcl2相关X蛋白(Bcl2-associated X,Bax)和B淋巴细胞瘤-2(B-cell lymphoma-2,Bcl-2)是细胞凋亡两个关键因子[38−39],分别发挥抑制和促进的作用,Bax与Bcl-2的比值是决定对凋亡抑制强弱的重要因素,结果显示模型组Bax/Bcl-2蛋白比值较空白对照组极显著增加(P<0.01),给药后,大枣高剂量组Bax/Bcl-2较模型组极显著下降(P<0.01);凋亡效应蛋白酶Caspase3通常以酶原的形式存在,当Caspase3活化后,则分割成为活化型的Cleaved Caspase3以诱导细胞的凋亡[40],与空白对照组相比,模型组Pro Caspase3、Cleaved Caspase3蛋白表达水平极显著上调(P<0.01),给药后,大枣高剂量组Pro Caspase3蛋白水平较模型组极显著下调(P<0.01),而2个给药组的Cleaved Caspase3蛋白水平均显著下调(P<0.05)(图8~图9)。进一步证明了大枣对肠道细胞凋亡的抑制作用。
3. 讨论与结论
本研究从中医运用大枣治疗解决糖尿病患者食欲旺盛的临床经验出发,采用高脂饮食联合STZ诱导的T2DM大鼠为研究对象,研究大枣对T2DM大鼠摄食及肠道炎症损伤情况的影响,本研究结果显示,大枣能够降低大鼠血清炎症因子IL-1β、TNF-α水平,增加食欲激素GLP-1、PYY水平,下调肠道炎症相关蛋白NF-κB p65、p-NF-κB p65的表达,以及凋亡相关蛋白Bax/Bcl-2、Pro Caspase3、Cleaved Caspase3的表达,并减少T2DM大鼠摄食量,且这种作用在高剂量组表现更为突出。
目前,大枣在调节摄食方面暂鲜有研究,但许多研究表明,大枣在抗炎方面有着较为明显的作用,Khoramjouy等[41]的研究中,大枣提取物可降低关节炎小鼠体内炎症因子如IL-1β、IL-6及TNF-α 的水平,Farhadnejad等[15]发现,大枣可减低2型糖尿病患者体内炎症因子超敏C反应蛋白(hs-CRP)的水平,本研究中,大枣同样降低了大鼠血清炎症因子IL-1β、TNF-α水平;Chen等[42]发现,大枣水提取物能够降低脂多糖诱导的巨噬细胞内IL-1β、IL-6的水平,认为其可能是通过抑制了NF-κB炎症通路从而发挥抗炎作用,Ruan等[43]的研究也表明,大枣中的多种提取成分均有抑制IκBα和NF-κB p6磷酸化的作用,可能通过介导NF-κB炎症通路来发挥抗炎、抗氧化的作用,类似的,本研究中,大枣也下调了NF-κB p65 mRNA及NF-κB p65、p-NF-κB p65蛋白的表达,表明大枣可通过调控炎症通路NF-κB以达到抗炎的作用。此外,在本研究中,大枣抑制了T2DM大鼠回肠组织炎症损伤水平及细胞凋亡情况,牛佳卉等[44]的研究也表明,大枣可通过抑制NF-κB通路的激活,减轻肠道屏障受损小鼠的肠道炎症,修复肠道屏障;Hai等[45]则发现大枣提取物能提高脓毒血症小鼠肠道紧密连接蛋白水平、增加凋亡相关蛋白Bax和Caspase3的表达,抑制肠道中过度的炎症反应和肠道屏障损伤。本研究结果同时显示,大枣在抑制大鼠肠道炎症损伤的同时,还增加了食欲激素GLP-1、PYY的水平,这与李瑶等[46]的研究中,大枣在减轻小鼠肠道炎症损伤的同时,还恢复了胃泌素、生长抑素等肠道所分泌食欲激素的水平的结果类似,说明大枣在修复肠道炎症损伤的同时也恢复了食欲激素的分泌,从而进一步发挥对T2DM大鼠摄食的抑制作用。
本研究证实了大枣对T2DM大鼠肠道炎症的抑制作用及对摄食的影响,初步探明了大枣抑制肠道炎症、减少T2DM大鼠摄食的机制,为临床运用大枣治疗糖尿病肠道炎症、抑制食欲旺盛的相关食品、药品的研发方面提供了新的思路和实验基础。今后的实验中,还有必要对大枣发挥作用的最佳剂量、大枣的主要药效成分等作更进一步的研究。
-
表 1 引物序列表
Table 1 Primer sequence list
基因 引物序列(5’~3’) 长度
(bp)NCBI
基因IDβ-Actin F:TGTCACCAACTGGGACGATA
R:GGGGTGTTGAAGGTCTCAAA165 81822 NF-κB p65 F:GGATGGCTTCTATGAGGCTGAACTC
R:CTTGCTCCAGGTCTCGCTTCTTC98 309165 Caspase3 F:GCGGTATTGAGACAGACAGTGGAAC
R:GCGGTAGAGTAAGCATACAGGAAGTC91 25402 -
[1] SUN H, SAEEDI P, KARURANGA S, et al. IDF diabetes atlas:global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J]. Diabetes Research and Clinical Practice,2022,183:109119. doi: 10.1016/j.diabres.2021.109119
[2] 单忠艳. 食物成瘾:不可忽视的2型糖尿病相关因素[J]. 中华糖尿病杂志,2016,8(4):193−194. [SHAN Z Y. Food addiction:a non-negligible correlative factor of diabetes[J]. Chin J Diabetes Mellitus,2016,8(4):193−194.] doi: 10.3760/cma.j.issn.1674-5809.2016.04.001 SHAN Z Y. Food addiction: a non-negligible correlative factor of diabetes[J]. Chin J Diabetes Mellitus, 2016, 8(4): 193−194. doi: 10.3760/cma.j.issn.1674-5809.2016.04.001
[3] 杨帆, 刘爱华, 李咏泽, 等. 中国东北地区初发2型糖尿病患者存在食物成瘾[J]. 中华糖尿病杂志,2016,8(4):205−209. [YANG F, LIU A H, LI Y Z, et al. Food addiction in patients with newly diagnosed type 2 diabetes in northeast China[J]. Chin J Diabetes Mellitus,2016,8(4):205−209.] doi: 10.3760/cma.j.issn.1674-5809.2016.04.005 YANG F, LIU A H, LI Y Z, et al. Food addiction in patients with newly diagnosed type 2 diabetes in northeast China[J]. Chin J Diabetes Mellitus, 2016, 8(4): 205−209. doi: 10.3760/cma.j.issn.1674-5809.2016.04.005
[4] 郑伟, 乔虹. 肠道菌群代谢产物与糖尿病患者食物成瘾的研究进展[J]. 中华临床营养杂志,2022(3):175−181. [ZHEN W, QIAO H. Research progress on metabolites of intestinal flora and food addiction in diabetic patients[J]. Chin J Clin Nutr,2022(3):175−181.] doi: 10.3760/cma.j.cn115822-20220121-00013 ZHEN W, QIAO H. Research progress on metabolites of intestinal flora and food addiction in diabetic patients[J]. Chin J Clin Nutr, 2022(3): 175−181. doi: 10.3760/cma.j.cn115822-20220121-00013
[5] CIGNARELLA A, BUSETTO L, VETTOR R. Pharmacotherapy of obesity:An update[J]. Pharmacological Research,2021,169:105649. doi: 10.1016/j.phrs.2021.105649
[6] MARKHAM A. Setmelanotide:First approval[J]. Drugs,2021,81(3):397−403. doi: 10.1007/s40265-021-01470-9
[7] PACCOSI S, CRESCI B, PALA L, et al. Obesity therapy:How and why?[J]. Curr Med Chem,2020,27(2):174−186. doi: 10.2174/0929867326666190124121725
[8] 陈源, 李振华, 岳仁宋, 等. 基于“从顺其宜”论甘味药在糖尿病中的应用[J]. 中国中医基础医学杂志,2019,25(12):1739−1740. [CHEN Y, LI Z H, YUE R S, et al. The use of sweet medicines in diabetes mellitus based on the principle of "following the wishes"[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine,2019,25(12):1739−1740.] CHEN Y, LI Z H, YUE R S, et al. The use of sweet medicines in diabetes mellitus based on the principle of "following the wishes"[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2019, 25(12): 1739−1740.
[9] 杨红, 杨彩虹, 朱晓东, 等. 中西结合探析甘味中药在糖尿病中的应用[J]. 光明中医,2014,29(12):2550−2551. [YANG H, YANG C H, ZHU X D, et al. Analysis in sweet chinese medicine applicated in diabetes[J]. Guangming Journal of Chinese Medicine,2014,29(12):2550−2551.] doi: 10.3969/j.issn.1003-8914.2014.12.033 YANG H, YANG C H, ZHU X D, et al. Analysis in sweet chinese medicine applicated in diabetes[J]. Guangming Journal of Chinese Medicine, 2014, 29(12): 2550−2551. doi: 10.3969/j.issn.1003-8914.2014.12.033
[10] 刘蕊蕊, 岳仁宋, 陈鑫, 等. 浅析大枣在治疗消渴善饥病症的临床应用[J]. 陕西中医药大学学报,2019,42(1):17−19. [LIU R R, YUE R S, CHEN X, et al. Clinical application of jujube in the treatment of thirst and hunger[J]. Journal of Shaanxi University of Chinese Medicine,2019,42(1):17−19.] LIU R R, YUE R S, CHEN X, et al. Clinical application of jujube in the treatment of thirst and hunger[J]. Journal of Shaanxi University of Chinese Medicine, 2019, 42(1): 17−19.
[11] 税嘉诚. 基于网络药理学探讨人参、甘草、大枣药组对T2DM大鼠食欲的影响及机制研究[D]. 成都:成都中医药大学, 2021. [SHUI J C. Study on the effect and mechanism of ginseng, licorice, jujube group on appetite of T2DM rats based on network pharmacology[D]. Chengdu:Chengdu University of Traditional Chinese Medicine, 2021.] SHUI J C. Study on the effect and mechanism of ginseng, licorice, jujube group on appetite of T2DM rats based on network pharmacology[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2021.
[12] 郭琳, 苗明三. 大枣现代研究分析[J]. 中医学报,2014,29(4):543−545. [GUO L, MIAO M S. Modern research analysis on fructus jujubae[J]. China Journal of Chinese Medicine,2014,29(4):543−545.] GUO L, MIAO M S. Modern research analysis on fructus jujubae[J]. China Journal of Chinese Medicine, 2014, 29(4): 543−545.
[13] LU Y, BAO T, MO J, et al. Research advances in bioactive components and health benefits of jujube (Ziziphus jujuba Mill.) fruit[J]. J Zhejiang Univ Sci B,2021,22(6):431−449. doi: 10.1631/jzus.B2000594
[14] GOYAL R, SHARMA P L, SINGH M. Possible attenuation of nitric oxide expression in anti-inflammatory effect of Ziziphus jujuba in rat[J]. J Nat Med,2011,65(3-4):514−518. doi: 10.1007/s11418-011-0531-0
[15] FARHADNEJAD H, ASGHARI G, HEDAYATI M, et al. Effect of Ziziphus jujube on cardiometabolic factors and systemic inflammation in type 2 diabetic patients:A randomized controlled trial[J]. Clin Nutr ESPEN,2022,49:53−60. doi: 10.1016/j.clnesp.2022.03.043
[16] JEONG O, KIM H S. Dietary chokeberry and dried jujube fruit attenuates high-fat and high-fructose diet-induced dyslipidemia and insulin resistance via activation of the IRS-1/PI3K/Akt pathway in C57BL/6J mice[J]. Nutr Metab (Lond),2019,16:38. doi: 10.1186/s12986-019-0364-5
[17] 孙广平, 宁磊, 方晓琳. 芒果苷改善2型糖尿病大鼠糖脂代谢紊乱的作用及机制研究[J]. 食品工业科技,2023,44(7):385−393. [SUN G P, NING L, FANG X L. Effect of mangiferin on the glycolipid metabolism disorder in T2DM rats and its mechanism[J]. Science and Technology of Food Industry,2023,44(7):385−393.] SUN G P, NING L, FANG X L. Effect of mangiferin on the glycolipid metabolism disorder in T2DM rats and its mechanism[J]. Science and Technology of Food Industry, 2023, 44(7): 385−393.
[18] 肖艳红, 谷佳琦, 杨晔娟, 等. 高脂高糖饲料联合STZ诱导2型糖尿病大鼠模型STZ最佳剂量探讨[J]. 承德医学院学报,2015,32(5):376−378. [XIAO Y H, GU J Q, YANG Y J, et al. Study on optimal dose of STZ in type 2 diabetes mellitus rats' model induced by high-fat and high-sugar diet combined STZ[J]. Journal of Chengde Medical College,2015,32(5):376−378.] XIAO Y H, GU J Q, YANG Y J, et al. Study on optimal dose of STZ in type 2 diabetes mellitus rats' model induced by high-fat and high-sugar diet combined STZ[J]. Journal of Chengde Medical College, 2015, 32(5): 376−378.
[19] 国家药典委员会编. 中华人民共和国药典 一部 2020年版[M]. 北京:中国医药科技出版社, 2020:24. [National Pharmacopoeia Commission, ed. Pharmacopoeia of the People's Republic of China, 2020 Edition[M]. Beijing:China Medical Science and Technology Press, 2020:24.] National Pharmacopoeia Commission, ed. Pharmacopoeia of the People's Republic of China, 2020 Edition[M]. Beijing: China Medical Science and Technology Press, 2020: 24.
[20] 李仪奎. 中药药理实验方法学[M]. 上海:上海科学技术出版社, 1991:562. [LI Y K. Experimental methodology of pharmacology of traditional Chinese medicines[M]. Shanghai:Shanghai Science and Technology Press, 1991:562.] LI Y K. Experimental methodology of pharmacology of traditional Chinese medicines[M]. Shanghai: Shanghai Science and Technology Press, 1991: 562.
[21] 吴海英, 邓金明, 徐智雷, 等. 归脾颗粒对厌食大鼠的改善作用及机制研究[J]. 中成药,2017,39(2):411−414. [WU H Y, DENG J M, XU Z L, et al. Study on the improvement effect and mechanism of spleen granules on anorexia rats[J]. Chinese Traditional Patent Medicine,2017,39(2):411−414.] doi: 10.3969/j.issn.1001-1528.2017.02.040 WU H Y, DENG J M, XU Z L, et al. Study on the improvement effect and mechanism of spleen granules on anorexia rats[J]. Chinese Traditional Patent Medicine, 2017, 39(2): 411−414. doi: 10.3969/j.issn.1001-1528.2017.02.040
[22] 龚雪娜, 贾婷, 张浩, 等. 肠脑轴参与动物食欲的调节机制[J]. 生命的化学,2021,41(1):61−67. [GONG X N, JIA T, ZHANG H, et al. The mechanism of gut-brain axis in appetite regulation in animals[J]. Chemistry of Life,2021,41(1):61−67.] GONG X N, JIA T, ZHANG H, et al. The mechanism of gut-brain axis in appetite regulation in animals[J]. Chemistry of Life, 2021, 41(1): 61−67.
[23] DISCHINGER U, CORTEVILLE C, OTTO C, et al. GLP-1 and PYY (3-36) reduce high-fat food preference additively after Roux-en-Y gastric bypass in diet-induced obese rats[J]. Surg Obes Relat Dis,2019,15(9):1483−1492. doi: 10.1016/j.soard.2019.04.008
[24] DE SILVA A, SALEM V, LONG C J, et al. The gut hormones PYY 3-36 and GLP-1 7-36 amide reduce food intake and modulate brain activity in appetite centers in humans[J]. Cell Metab,2011,14(5):700−706. doi: 10.1016/j.cmet.2011.09.010
[25] 崔涛, 任艳, 马虹, 等. 初诊2型糖尿病患者胃肠激素胰高血糖素样肽-1、酪酪肽和促生长素水平的变化[J]. 四川大学学报(医学版),2013,44(5):774−778. [CUI T, REN Y, MA H, et al. The changes of gastrointestinal hormones GLP-1, PYY and ghrelin in patients with newly diagnosed type 2 diabetes mellitus[J]. Journal of Sichuan University (Medical Science Edition),2013,44(5):774−778.] CUI T, REN Y, MA H, et al. The changes of gastrointestinal hormones GLP-1, PYY and ghrelin in patients with newly diagnosed type 2 diabetes mellitus[J]. Journal of Sichuan University (Medical Science Edition), 2013, 44(5): 774−778.
[26] 张旭艳, 丁胜, 杨帆, 等. 血清P选择素、胰高血糖素样肽-1与初诊断2型糖尿病患者胰岛素抵抗的关系[J]. 中华保健医学杂志,2019,21(3):198−201. [ZHANG X Y, DING S, YANG F, et al. The relationship between serum sp-selectin, GLP-1 and insulin resistance in newly diagnosed patients with T2DM[J]. Chinese Journal of Health Care and Medicine,2019,21(3):198−201.] doi: 10.3969/.issn.1674-3245.2019.03.003 ZHANG X Y, DING S, YANG F, et al. The relationship between serum sp-selectin, GLP-1 and insulin resistance in newly diagnosed patients with T2DM[J]. Chinese Journal of Health Care and Medicine, 2019, 21(3): 198−201. doi: 10.3969/.issn.1674-3245.2019.03.003
[27] OSINSKI C, LE GLÉAU L, POITOU C, et al. Type 2 diabetes is associated with impaired jejunal enteroendocrine GLP-1 cell lineage in human obesity[J]. Int J Obes (Lond),2021,45(1):170−183. doi: 10.1038/s41366-020-00694-1
[28] COOPE A, TORSONI A S, VELLOSO L A. Mechanisms in endocrinology:Metabolic and inflammatory pathways on the pathogenesis of type 2 diabetes[J]. Eur J Endocrinol,2016,174(5):R175−187. doi: 10.1530/EJE-15-1065
[29] 茅国芳, 周红文. 肠道菌群与肥胖、2型糖尿病关系的研究进展[J]. 江苏医药,2017,43(11):809−811. [MAO G F, ZHOU H W. Research progress on the relationship between intestinal flora and obesity and type 2 diabetes[J]. Jiangsu Medical Journal,2017,43(11):809−811.] MAO G F, ZHOU H W. Research progress on the relationship between intestinal flora and obesity and type 2 diabetes[J]. Jiangsu Medical Journal, 2017, 43(11): 809−811.
[30] 林璋, 祖先鹏, 谢海胜, 等. 肠道菌群与人体疾病发病机制的研究进展[J]. 药学学报,2016,51(6):843−852. [LIN Z, ZU X P, XIE H S, et al. Research progress in mechanism of intestinal microorganisms in human diseases[J]. Acta Pharmaceutica Sinica,2016,51(6):843−852.] LIN Z, ZU X P, XIE H S, et al. Research progress in mechanism of intestinal microorganisms in human diseases[J]. Acta Pharmaceutica Sinica, 2016, 51(6): 843−852.
[31] ZHOU X, HAN D, XU R, et al. A model of metabolic syndrome and related diseases with intestinal endotoxemia in rats fed a high fat and high sucrose diet[J]. PLoS One,2014,9(12):e115148. doi: 10.1371/journal.pone.0115148
[32] WEN Y A, LI X, GORETSKY T, et al. Loss of PHLPP protects against colitis by inhibiting intestinal epithelial cell apoptosis[J]. Biochim Biophys Acta, 2015, 1852(10 Pt A):2013−2023.
[33] WILLIAMS J M, DUCKWORTH C A, WATSON A J, et al. A mouse model of pathological small intestinal epithelial cell apoptosis and shedding induced by systemic administration of lipopolysaccharide[J]. Dis Model Mech,2013,6(6):1388−1399.
[34] LAWRENCE T. The nuclear factor nf-kappab pathway in inflammation[J]. Cold Spring Harb Perspect Biol,2009,1(6):a001651.
[35] LI Z, XIAO G, WANG H, et al. A preparation of Ginkgo biloba L. leaves extract inhibits the apoptosis of hippocampal neurons in post-stroke mice via regulating the expression of Bax/Bcl-2 and Caspase-3[J]. J Ethnopharmacol,2021,280:114481. doi: 10.1016/j.jep.2021.114481
[36] LIU Z, ZHAO J, SUN R, et al. Lactobacillus plantarum 23-1 improves intestinal inflammation and barrier function through the TLR4/NF-κB signaling pathway in obese mice[J]. Food Funct,2022,13(11):5971−5986. doi: 10.1039/D1FO04316A
[37] CUESTA C M, PASCUAL M, PÉREZ-MORAGA R, et al. TLR4 deficiency affects the microbiome and reduces intestinal dysfunctions and inflammation in chronic alcohol-fed mice[J]. Int J Mol Sci,2021,22(23):12830. doi: 10.3390/ijms222312830
[38] SALAKOU S, KARDAMAKIS D, TSAMANDAS A C, et al. Increased Bax/Bcl-2 ratio up-regulates Caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis[J]. In Vivo,2007,21(1):123−132.
[39] LI Y, WANG Y, YU X, et al. Radix tetrastigma inhibits the non-small cell lung cancer via Bax/Bcl-2/Caspase-9/Caspase-3 pathway[J]. Nutr Cancer,2022,74(1):320−332. doi: 10.1080/01635581.2021.1881569
[40] NOBLE P, VYAS M, AL-ATTAR A, et al. High levels of Cleaved Caspase-3 in colorectal tumour stroma predict good survival[J]. Br J Cancer,2013,108(10):2097−2105. doi: 10.1038/bjc.2013.166
[41] KHORAMJOUY M, BAYANATI M, NOORI S, et al. Effects of Ziziphus jujuba extract alone and combined with Boswellia serrata extract on monosodium iodoacetate model of osteoarthritis in mice[J]. Iranian Journal of Pharmaceutical Research:IJPR,2022,21(1):e134338−e134338.
[42] CHEN J, DU C Y Q, LAM K Y C, et al. The standardized extract of Ziziphus jujuba fruit (jujube) regulates pro-inflammatory cytokine expression in cultured murine macrophages:Suppression of lipopolysaccharide-stimulated NF-κB activity[J]. Phytotherapy research,2014,28(10):1527−1532. doi: 10.1002/ptr.5160
[43] RUAN J, SUN F, HAO M, et al. Structurally diverse triterpenes obtained from the fruits of Ziziphus jujuba Mill. as inflammation inhibitors by NF-κB signaling pathway[J]. Food & Function,2021,12(10):4496−4503.
[44] 牛佳卉, 袁静, 魏然, 等. 红枣多糖对小鼠肠道免疫屏障的保护作用及机制研究[J]. 食品工业科技,2021,42(4):295−300,306. [NIU J H, YUAN J, WEI R, et al. Protective effect and mechanism study of jujube polysaccharides on intestinal immune barrier in mice[J]. Science and Technology of Food Industry,2021,42(4):295−300,306.] NIU J H, YUAN J, WEI R, et al. Protective effect and mechanism study of jujube polysaccharides on intestinal immune barrier in mice[J]. Science and Technology of Food Industry, 2021, 42(4): 295−300,306.
[45] HAI C Z, CHANG A G, WEN W Y, et al. Zizyphus jujuba cv. Muzao polysaccharides enhance intestinal barrier function and improve the survival of septic mice[J]. Journal of Food Biochemistry,2021,45(5):e13722.
[46] 李瑶, 郭盛, 陶伟伟, 等. 基于小鼠胃肠道系统毒性及利尿效应的大枣与巴豆霜配伍减毒机制研究[J]. 药学学报,2019,54(1):95−103. [LI Yao, GUO Sheng, TAO Weiwei, et al. Detoxification mechanism of Jujubae fructus and Crotonis Semen Pulveratum based on the toxicity of gastrointestinal system and diuretic effect in mice[J]. Acta Pharmaceutica Sinica,2019,54(1):95−103.] LI Yao, GUO Sheng, TAO Weiwei, et al. Detoxification mechanism of Jujubae fructus and Crotonis Semen Pulveratum based on the toxicity of gastrointestinal system and diuretic effect in mice[J]. Acta Pharmaceutica Sinica, 2019, 54(1): 95−103.