• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

不同预干燥方式对瞬时压差膨化香菇脆品质特性的影响

赵亚, 张越翔, 徐燕, 石启龙

赵亚,张越翔,徐燕,等. 不同预干燥方式对瞬时压差膨化香菇脆品质特性的影响[J]. 食品工业科技,2023,44(17):281−287. doi: 10.13386/j.issn1002-0306.2022110307.
引用本文: 赵亚,张越翔,徐燕,等. 不同预干燥方式对瞬时压差膨化香菇脆品质特性的影响[J]. 食品工业科技,2023,44(17):281−287. doi: 10.13386/j.issn1002-0306.2022110307.
ZHAO Ya, ZHANG Yuexiang, XU Yan, et al. Effect of Different Pre-drying Methods on the Quality Attributes of Instant Controlled Pressure Drop Puffing Dried Shiitake (Lentinus edodes) Crisps[J]. Science and Technology of Food Industry, 2023, 44(17): 281−287. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110307.
Citation: ZHAO Ya, ZHANG Yuexiang, XU Yan, et al. Effect of Different Pre-drying Methods on the Quality Attributes of Instant Controlled Pressure Drop Puffing Dried Shiitake (Lentinus edodes) Crisps[J]. Science and Technology of Food Industry, 2023, 44(17): 281−287. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110307.

不同预干燥方式对瞬时压差膨化香菇脆品质特性的影响

基金项目: 山东理工大学-沂源县产业技术研究院科技项目支持计划(3221005)。
详细信息
    作者简介:

    赵亚(1974−),女,硕士,高级实验师,研究方向:农产品加工与贮藏,E-mail:zy0028014@sdut.edu.cn

    通讯作者:

    石启龙(1974−),男,博士,教授,研究方向:果蔬/水产品加工与贮藏,E-mail:qilongshi@sdut.edu.cn

  • 中图分类号: TS254.4

Effect of Different Pre-drying Methods on the Quality Attributes of Instant Controlled Pressure Drop Puffing Dried Shiitake (Lentinus edodes) Crisps

  • 摘要: 为探究预干燥方式对瞬时压差膨化(instant controlled pressure drop,DIC)整果香菇脆品质特性影响,开发即食香菇脆休闲食品,本文研究了热风干燥(hot air drying,HAD)、热泵干燥(heat pump drying,HPD)和真空冷冻干燥(vacuum freeze drying,FD)等3种预干燥方式对DIC香菇脆品质的影响。结果表明,香菇脆总干燥时间取决于预干燥方式,由低至高为:HAD-DIC<HPD-DIC<FD-DIC;平均干燥速率则与之相反。总色差由低到高为:FD-DIC<HPD-DIC<HAD-DIC。膨化度高低顺序为:HPD-DIC>HAD-DIC>FD-DIC。复水比高低顺序为:FD-DIC>HPD-DIC>HAD-DIC。HAD-DIC香菇脆硬度值最高,脆度值最低;FD-DIC香菇脆硬度和脆度均较低;HPD-DIC香菇脆硬度适中且脆度最高。总糖含量高低顺序为:FD-DIC>HPD-DIC>HAD-DIC。低场核磁共振(low field nuclear magnetic resonance,LF-NMR)结果表明,相比于FD和HAD预干燥,HPD后的香菇疏松结合水和不易流动水所占比例较高,紧密结合水比例较低,有利于DIC瞬间泄压时水分闪蒸,为香菇膨化提供充足驱动力。综合考虑,香菇脆最适预干燥方式为HPD。
    Abstract: In order to explore the effect of pre-drying methods on the quality attributes of instant controlled pressure drop puffing (DIC) dried whole shiitake (Lentinus edodes) crisps and develop ready-to-eat L. edodes snack food, this study investigated the influence of three different pre-drying methods, viz., hot air drying (HAD), heat pump drying (HPD) and vacuum freeze drying (FD) on the quality attributes of L. edodes crisp. The results showed that the total drying time of L. edodes crisps depended on the pre-drying method, following the order of HAD-DIC<HPD-DIC<FD-DIC. Opposite tendency was observed in the average drying rate. The total color difference of L. edodes followed the order of FD-DIC<HPD-DIC<HAD-DIC. The puffing degree of L. edodes crisps followed the order of HPD-DIC>HAD-DIC>FD-DIC. The rehydration ratio of L. edodes crisps followed the order of FD-DIC>HPD-DIC>HAD-DIC. HAD-DIC resulted in the highest hardness and lowest brittleness. FD-DIC resulted in the lower hardness and crispness. HPD-DIC resulted in the highest crispness and optimal hardness. The total sugar content of L. edodes crisps followed the order of FD-DIC>HPD-DIC>HAD-DIC. Low field nuclear magnetic resonance (LF-NMR) revealed that compared with HAD and FD, the proportion of tightly bound water and immobilized water in L. edodes after HPD was higher, and the proportion of tightly bound water was lower, which was conductive to water flash evaporation during DIC processing thus providing sufficient driving force for the puffing of Lentinus edodes. In conclusion, HPD was the best pre-drying method for L. edodes crisps.
  • 香菇(Lentinus edodes)是源于中国的珍贵食用菌,被誉为“蘑菇皇后”,不仅富含蛋白质、氨基酸、维生素等营养成分,而且含有香菇多糖、香菇多肽和麦角固醇等活性成分,兼具药食同源功能[1]。香菇含水率高,呼吸和蒸腾作用旺盛,采后极易发生褐变、开伞、腐烂等劣变现象[2]。这不仅造成了采后巨大损失,而且制约了香菇产业的可持续发展。大力发展香菇精深加工是解决这一问题的重要途径。

    香菇脆片是利用脱水技术加工而成的一种休闲食品[3]。目前,香菇休闲脆片加工方法包括油炸/真空油炸[4]、真空冷冻干燥(freeze drying,FD)[5]、微波干燥(microwave drying,MWD)[6]、变温压差膨化[7]。真空油炸是食用菌脆片主要加工方式,但制品含油率高,不仅容易氧化酸败,长期食用对人体健康不利[8]。FD香菇脆片品质高,但生产周期长、耗电量高[9]。微波干燥不均匀,产品容易焦糊,而且存在微波泄露等问题[3]

    瞬时压差膨化(instant controlled pressure drop puffing,法文Détente Instantanée Contrôlée,DIC),又称气流膨化、变温压差膨化、爆炸膨化干燥、压差闪蒸膨化干燥,主要用于苹果、桃、菠萝、胡萝卜、南瓜等非油炸果蔬脆片的加工[10]。但是,国内外关于DIC食用菌尤其香菇脆片方面的报道非常少,主要集中在切片香菇膨化工艺参数优化方面。刘增强等[7]利用响应面法优化得到香菇脆片最优膨化工艺为:香菇片厚度7 mm、膨化压力0.2 MPa、膨化温度90 ℃、停滞时间12 min、抽空温度80 ℃、抽空时间68 min。郭玲玲等[11]通过响应面法优化得到香菇脆片的最优工艺参数为:预干燥含水率35.42%、抽空温度56.88 ℃、抽空时间0.88 h。

    预干燥是决定DIC果蔬脆片品质的关键因素,决定物料膨化效果和膨化产品品质[10]。预干燥方式包括渗透脱水(osmotic dehydration,OD)、热风干燥(hot air drying,HAD)、真空干燥(vacuum drying,VD)、FD、MWD、红外干燥(infrared drying,IRD)及上述方式联合,例如:OD-HAD-DIC苹果丁[12],HAD-DIC、MWD-DIC、FD-DIC苹果丁[13]、FD-DIC枸杞[14],OD-HAD-DIC黄桃片[15],HAD-DIC、FD-DIC南瓜片[16],MVD-DIC胡萝卜[17],HAD-DIC山药片[18]。刘增强等[7]和郭玲玲等[11]研制的香菇脆片分别以VFD和IRD为预干燥方式。VFD设备投资和维护成本高,而且能耗高[3,9],红外辐射加热不均匀且穿透深度有限[19]。因此,亟需节能、高效、温和的预干燥方式。热泵干燥(heat pump drying,HPD)因参数容易控制、条件温和、节能与环境友好,适用于热敏性物料干燥[20]。鉴于此,本研究以整果香菇为原料,探究HAD、HPD、FD等3种预干燥方式对香菇脆品质特性的影响,旨在为非油炸香菇脆DIC技术提供理论依据和实践参考。

    新鲜香菇 购于淄博众志农业科技有限公司;麦芽糊精(MD) (DE值=15,食品级) 山东西王集团有限公司;乳清分离蛋白(WPI)(食品级) 山东谷康生物工程有限公司;无水亚硫酸钠(分析纯) 天津市瑞金特化学品有限公司;食盐、鸡味粉 市售。

    FD-IB-80冷冻干燥机 北京博医康实验仪器有限公司;DHG-9140A电热鼓风干燥箱 上海一恒科学仪器有限公司;1HP-5热泵除湿干燥设备 青岛欧美亚科技有限公司;PHK600-1果蔬低温气流膨化设备 天津市勤德新材料科技有限公司;UV-2102PCS紫外可见分光光度计 尤尼科(上海)仪器有限公司;IKA T18高速分散机 德国IKA集团;PQ001核磁共振分析仪 上海纽迈电子科技有限公司;TA.XT PLU物性测试仪 英国Stable Micro Systems公司;HH-6数显恒温水浴锅 龙口市先科仪器公司;WSC-S测色色差计 上海仪电物理光学仪器有限公司;AL204分析天平 梅特勒-托利多仪器有限公司。

    香菇采摘后立即冷链运输至实验室,5 ℃冷藏备用。香菇初始湿基含水率为85%±2%,菌盖直径(5±0.5)cm。香菇去除菇柄、清洗后置于质量分数0.6%亚硫酸钠溶液中护色20 min,然后取出,沥干表面水分。将香菇置于热泵除湿干燥设备,温度35 ℃、风速1.5 m/s条件下预干燥至湿基含水率70%。然后,将香菇置于复合渗透调味溶液(溶质及质量分数分别为:20%麦芽糊精,10%乳清分离蛋白,2%食盐,1%鸡味粉),在温度25 ℃、料液比1:3条件下渗透调味处理3 h。

    渗透调味预处理后的香菇平均分成3份,分别进行HAD、HPD和FD预干燥。HAD参数:温度65 ℃,风速1.0 m/s。HPD参数:温度35 ℃,风速1.5 m/s。FD参数:香菇于−40 ℃预冷24 h,然后置于冻干机中,控制冷阱温度−78 ℃,真空度≤30 Pa。采用3种预干燥方式将香菇湿基含水率降低至35%±2%,然后分别密封于铝箔袋中,置于4 ℃展示柜均湿处理24 h。

    均湿处理后的香菇置于果蔬低温气流膨化设备,控制DIC参数分别为:膨化温度85 ℃,膨化压力0.3 MPa,停滞时间12 min,真空干燥温度65 ℃。直至香菇湿基含水率≤7%,膨化结束后的香菇立即密封于铝箔袋,测试指标。

    t=t1+t2
    (1)

    式中:t为总干燥时间,h;t1为预干燥时间,h;t2为DIC时间,h。

    平均干燥速率(average drying rate,Va)计算式[21]

    Va(kgkg1h1)=X0Xtt1+t2
    (2)

    式中:Va为平均干燥速率,kg/(kg·h);X0为香菇初始干基含水率,kg/kg;Xt为香菇DIC膨化后干基含水率,kg/kg;t1为预干燥时间,h;t2为DIC时间,h。

    采用色差计测定香菇色泽参数。总色差(total color difference,ΔE)计算式[13]

    ΔE=(LL)2+(aa)2+(bb)2
    (3)

    式中:L*a*b*为新鲜香菇色泽参数;Lab为DIC香菇脆色泽参数。

    采用比容法测定香菇的体积[16],膨化度(puffing degree,Pd)计算式:

    Pd(%)=VV0V0×100
    (4)

    式中:V0和V分别为DIC前和DIC后香菇体积,mL。

    采用称量法测定复水比(rehydration ratio,RR[17],RR计算式:

    RR=mrm0
    (5)

    式中:m0和mr分别为香菇脆复水前和复水后质量,g。

    参考Li等[12]方法,采用物性测试仪测定香菇脆硬度和脆度,略作改动。选取P/75柱形探头,设置形变量为50%,测试前、中、后的速度分别为2.0、1.0、1.0 mm/s,触发力100 g,2次压缩间隔时间为5.0 s,数据采集速率500 次/s。测试峰最高值为硬度,峰的个数作为脆度值。每组样品平行测定测定12次,结果取平均值。

    采用GB/T 15672-2009[22]测定香菇中总糖含量。总糖(w)含量计算式:

    w(%)=m1×V1×106m2×V2×(1Xw)×100
    (6)

    式中:V1为样品的定容体积,mL;V2为比色测定时所移取测定液的体积,mL;m1为从标准曲线上查得样品测定液中的含糖量,μg;m2为样品质量,g;Xw为样品湿基含水率,%。

    采用低场核磁共振(low field nuclear magnetic resonance,LF-NMR)测定香菇水分组成及状态分布。采用Carr-Purcell-Meiboom-Gill(CPMG)脉冲序列确定样品横向弛豫时间(transverse relaxation time,T2)。LF-NMR测试参数:温度32 ℃,质子共振频率20 MHz,采样频率100 kHz,累加次数4次,等待时间3000 ms,90°、180°脉宽分别为5.52、11.20 μs,回波数10000,回波时间0.6 ms。CPMG指数衰减曲线通过综合迭代算法反演,得到T2值和离散型与连续型相结合的T2谱图,弛豫信号采用多指数函数表达:

    M(t)=i=1NAiexp(tT2i)+A0
    (7)

    式中,M(t)为横向磁化矢量衰减到t时间后的信号量,总信号量的大小是所有成分产生信号大小的总和;Ai为样品中第i种成分的信号幅度;T2i为样品中第i种成分的T2;A0为噪声信号。

    实验和指标测定平行3次,数据采用平均值±标准差表示。采用SPSS 19.0进行单因素方差分析,差异显著则进行Duncan多重比较,P<0.05表示差异显著。采用OriginPro 2018绘图及Pearson相关性分析。

    预干燥方式对香菇干燥时间及平均干燥速率Va的影响如图1所示。对于预干燥时间而言,FD>HPD>HAD,3者之间存在显著差异(P<0.05)。干燥介质温度是导致3种预干燥方式时间长短的主要因素,由于干燥温度HAD>HPD>FD,所以样品达到同样湿基含水率35%±2%所需时间与干燥温度负相关。对于DIC干燥时间而言,由于预干燥后的初始含水率相同,DIC膨化次数固定,随后的真空干燥的时间差距不明显(P>0.05)。因此,总干燥时间及Va主要取决于预干燥方式。Yi等[23-24]研究了不同预干燥方式对压差膨化梨片和菠萝蜜片的影响,得到了相同的结论。对于Va,HAD-DIC>HPD-DIC>FD-DIC,3者之间呈显著差异(P<0.05)。这主要是由于3种预干燥方式显著影响香菇脆总干燥时间所致。

    图  1  预干燥方式对香菇脆干燥时间及平均干燥速率的影响
    注:相同指标不同预干燥方式之间小写字母不同表示差异显著(P<0.05);图2~图4同。
    Figure  1.  Effect of pre-drying methods on the drying time and average drying rate of L. edodes crisps

    色泽是评估食品质量和消费者可接受性的重要指标之一,干燥方法和工艺条件对干制品色泽影响较大[13]。预干燥方式对香菇色泽影响如表1所示。香菇脆L值FD-DIC>HPD-DIC>HAD-DIC。由于FD真空、低温干燥条件,抑制了香菇干燥过程中酶促/非酶促褐变反应[25]。此外,HAD-DIC香菇脆ab值均最高,HPD-DIC香菇的a值高于FD-DIC,FD-DIC香菇的b值则高于HPD-DIC。HAD-DIC香菇的ΔE值最高,这可能是因为HAD温度较高,美拉德反应较为严重,产生类黑精物质[16],使香菇脆色泽加深。HPD-DIC香菇的ΔE值较低,这主要是由于HPD温和的干燥条件所致。FD-DIC香菇的ΔE值最低,主要因为低温及真空条件,导致香菇酶促/非酶褐变反应较低,因此其L值较高、a值较低。综上,FD-DIC可较高程度地维持香菇原有颜色,HPD-DIC次之,HAD-DIC色泽最差。

    表  1  预干燥方式对香菇脆色泽参数的影响
    Table  1.  Effect of pre-drying methods on the color parameters of L. edodes crisps
    预干燥方式LabΔE
    HAD25.38±1.46c16.13±3.50a33.13±2.49a30.67±1.47a
    HPD48.11±1.20b7.28±1.13b15.27±1.41c15.26±0.94b
    FD58.53±2.20a4.43±0.63c23.63±1.90b9.85±1.54c
    注:同列肩标小写字母不同表示差异显著(P<0.05);表2同。
    下载: 导出CSV 
    | 显示表格

    不同预干燥方式对香菇脆Pd及RR的影响如图2所示。不同预干燥方式显著(P<0.05)影响DIC香菇脆Pd。HPD-DIC香菇脆Pd最高(51.52%),这是因为HPD温度低,香菇能够保持较完整的内部骨架结构,在后续DIC瞬间减压过程中,内部水分闪蒸带动内部骨架膨胀。HAD-DIC香菇脆Pd为37.93%,这是因为HAD温度高,水分散失快且不均匀,导致细胞收缩,组织坍塌严重,表面硬化结壳所致[26]。但是,FD-DIC香菇的Pd最低(5.45%),这是因为FD在低温和真空条件下使冰晶升华,避免了高温对香菇的影响,能最大程度上保持原料形态,物料内部结构改变较小[27],因此,预干燥后几乎保持了香菇原有的体积。需要指出的是,由于本研究中Pd的计算为DIC前后香菇体积变化(公式4),FD香菇DIC前体积收缩程度低,因此在后续膨化过程中,体积变化幅度较小,因此Pd较低。实际上,香菇脆最终膨化效果,FD-DIC略高于HPD-DIC,但二者都显著高于HAD-DIC。

    图  2  预干燥方式对香菇脆膨化度及复水比的影响
    Figure  2.  Effect of pre-drying methods on the Pd and RR of L. edodes crisps

    3种预干燥方式下香菇脆的RR由高到低为:FD-DIC>HPD-DIC>HAD-DIC。复水能力与香菇脆组织形态密切相关,蓬松多孔状态有利于提高复水效果[11]。FD由于是在低温和真空条件下进行,而且通过冰晶升华形式脱水,所以预干燥后香菇体积收缩程度小[28],而且香菇蛋白质、多糖等成分损失较HAD和HPD少,因此FD-DIC香菇脆复水能力强。HAD高温导致香菇内部结构严重萎缩,高温也会导致香菇蛋白质变性,香菇多糖降解,失去吸水能力或水合能力[29]。HPD因条件温和,温度介于HAD和FD之间,故HPD-DIC香菇脆RR高于HAD-DIC但低于FD-DIC。此外,RR与Pd正相关[11],Pd越高,则内部结构越疏松,所以HPD-DIC香菇脆RR显著(P<0.05)高于HAD-DIC。FD-DIC香菇脆Pd低,但RR显著高于HPD-DIC。如前所述,这主要由于本研究中Pd计算方式所致。实际上,若以新鲜香菇为对比,FD-DIC膨化效果高于HPD-DIC香菇脆,因此,其RR也显著优于HPD-DIC。

    硬度和脆度是影响口感的重要因素,由图3可以看出,3种预干燥方式显著(P<0.05)影响香菇脆的硬度和脆度。HAD-DIC香菇脆的硬度值最高,脆度值最低,说明其组织紧密,密度大,口感最差;HPD-DIC香菇硬度适中且脆度最高,这是因为其Pd最高,内部结构组织疏松;FD-DIC香菇硬度值最低,说明其质地相对较软,但脆度值显著(P<0.05)低于HPD-DIC。这意味着由FD-DIC获得的多孔结构在质构测量期间,可能缺乏足够的强度在下一次坍塌之前触发一个新的峰值[24]。Yi等[30]研究了HAD和FD预处理对芒果、火龙果和番木瓜脆片硬度和脆度的影响,得到了相同的结论。

    图  3  预干燥方式对香菇脆硬度和脆度的影响
    Figure  3.  Effect of pre-drying methods on the hardness and brittleness of L. edodes crisps

    不同预干燥方式对香菇总糖含量的影响如图4所示。3种预干燥方式显著(P<0.05)影响香菇脆的总糖含量。其中,FD-DIC香菇总糖含量最高,这主要是由于FD过程中水分由冰晶状态直接升华,低温和真空条件下,糖类不易与其他物质发生反应或降解所致[28]。HAD-DIC香菇总糖含量最低,因为糖类物质的损耗与加热温度密切相关,HAD温度高,香菇的呼吸作用会在短时间内增强消耗糖类物质,且还原糖易与氨基酸类物质发生美拉德反应,从而降低总糖含量[26]。HPD由于干燥温度较低,糖类物质在干燥过程损失较少,故HPD-DIC香菇总糖含量显著高于HAD-DIC,但却低于FD-DIC。

    图  4  预干燥方式对香菇脆总糖含量的影响
    Figure  4.  Effect of pre-drying methods on the total sugar content of L. edodes crisps

    图5为3种预干燥方式对香菇预干燥后LF-NMR T2谱图的影响。T2反映了样品中水分的流动性与自由度,T2值越高,说明水分自由度越高,流动性越强;反之,T2值越小,说明水分子与底物结合越紧密[31]。由图5可以看出,无论哪种预干燥方式,香菇预干燥后均包括4个峰,分别为强结合水(T2b)、弱结合水(T21)、不易流动水(T22)和自由水(T23)。其中,T2b,T21,T22和T23的弛豫时间区间分别为0.23~0.25,1.34~4.79,9.62~27.92和82.01~101.44 ms。

    图  5  不同干燥方式对香菇预干燥后弛豫时间的影响
    Figure  5.  Effect of different drying methods on T2 of L. edodes after pre-drying

    表2为不同预干燥方式对预干燥后的香菇LF-NMR T2及弛豫特性各组分比例的影响。3种预干燥方式对香菇T2b影响不显著(P>0.05),这意味着预干燥方式对与大分子极性基团紧密结合的紧密结合水影响较小。HPD后的香菇T21的弛豫时间显著(P<0.05)高于HAD与FD,说明热泵预干燥后的香菇自由度较高,流动性较强,后续DIC膨化干燥过程中更容易被去除。关于T22和T23,HAD后的香菇的弛豫时间显著(P>0.05)高于HPD和FD。

    表  2  香菇预干燥后LF-NMR弛豫时间及各组分比例
    Table  2.  The relaxation time and the proportion of each component of LF-NMR in L. edodes after pre-drying
    预干燥方式弛豫时间(ms)各组分比例(%)
    T2bT21T22T23mT2bmT21mT22mT23
    HAD0.25±0.06a2.25±0.07b27.92±2.14a101.44±5.20a26.43±1.36a70.27±3.75b2.78±0.14a0.52±0.05a
    HPD0.24±0.05a4.79±0.92a16.77±1.26b87.12±6.57b8.29±0.97b88.56±1.79a2.59±0.21a0.56±0.08a
    FD0.23±0.03a1.34±0.05c9.62±0.75c82.01±6.42b28.22±1.27a70.60±2.70b1.26±0.15b0.46±0.05b
    下载: 导出CSV 
    | 显示表格

    LF-NMR信号强度值与样品中氢质子数目成正比,各状态水分的含量可由T2反演谱图各峰面积表示[21],T2b,T21,T22和T23相对含量可由各自峰面积除以总峰面积得到,分别表示为mT2b,mT21,mT22和mT23。由图5可以看出,预干燥后香菇的水分主要为结合水,mT22与mT23占比较小,且相比于T2b、T21和T22,T23自由度与流动性较高,DIC升温过程中,T23很有可能已被除去,对DIC瞬间泄压时水分闪蒸膨化力的产生贡献度不高。由表2可知,FD与HAD香菇的mT2b和mT21无显著差异(P>0.05),HPD香菇的mT2b显著(P<0.05)低于FD和HAD香菇,而HPD香菇的mT21达到88.56%,显著(P<0.05)高于FD和HAD香菇。相比于T2b,T21的自由度更高,较高的mT21有利于DIC过程中水分的蒸发汽化,为香菇膨化提供充足的动力,带动香菇组织膨胀,形成疏松多孔的蜂窝网状结构,进而提高Pd[21],降低香菇脆硬度,提高脆度和复水能力。T22的自由度处于T21和T23之间,HAD与HPD香菇的mT22无显著差异(P>0.05),但显著(P<0.05)高于FD香菇,较高的mT22在DIC过程中同样会为香菇膨化提供动力,FD香菇因为mT21和mT22均较低,故其Pd最低,相反地,HPD香菇具有较高的mT21和mT22,且T21和T22的弛豫时间较高,故HPD香菇Pd最高。这意味着香菇脆膨化动力取决于疏松结合水和不易流动水所占比例,而与自由水关系不大。

    LF-NMR T2弛豫信号与香菇脆品质特性的相关性如表3所示。由表2可知,各组间T2b差异不显著,故不讨论其与香菇脆品质的相关性。由表3可知,水分组成对香菇脆品质影响不同,T21与Pd极显著(P<0.01)正相关,与脆度显著(P<0.05)正相关,但与RR显著(P<0.05)负相关。这意味着,香菇膨化过程中,膨化动力产生主要取决于弱结合水,进而影响香菇脆脆度。T22、T23与△E和硬度极显著(P<0.01)正相关,与RR、脆度和总糖含量极显著负相关(P<0.01)。这说明香菇脆色泽、质地、复水特性和总糖含量等品质与不易流动水和自由水密切相关。此外,T22 与 Va 显著正相关(P<0.05);但 T23 与 Va 无显著相关性(P>0.05)。这说明香菇脆干燥效率取决于不易流动水,而与自由水变化无关。就水分状态分布而言,mT2b与Pd和脆度极显著(P<0.01)负相关。mT21与Pd显著(P<0.05)正相关,但与脆度极显著(P<0.01)正相关。这意味着,香菇脆膨化效果和脆度显著依赖于强结合水和弱结合水所占比例。mT22与Va显著(P<0.05)正相关,与△E、Pd和硬度极显著正相关(P<0.01),但与RR和总糖含量极显著(P<0.01)负相关。不易流动水所占比例决定香菇脆干燥效率、色泽、质地、复水特性和总糖含量等指标。mT23与RR和总糖含量显著负相关(P<0.05),但与香菇脆其他品质指标间无显著相关性(P>0.05)。综上,香菇脆Pd与T21、mT2b、mT21和mT22密切相关,香菇在HPD后具有较高的T21、mT21和mT22,较低的mT2b,因此,有利于提高香菇脆Pd。香菇脆脆度与T21、T22、T23、mT2b和mT21密切相关,香菇在HPD后具有较高的T21和mT21,较低的mT2b,适中的T22和T23,因此,有利于提高香菇脆脆度。同样地,HPD后也有利于提高香菇脆其他品质特性。因此,DIC香菇最优的预干燥方式为HPD。

    表  3  LF- NMR弛豫参数与香菇脆品质的相关性
    Table  3.  Correlation between LF-NMR relaxation parameters and quality of L. edodes crisps
    指标T21T22T23mT2bmT21mT22mT23
    Va0.2730.698*0.525−0.1990.0990.700*0.354
    ΔE−0.0580.956**0.791**0.244−0.3280.720**0.212
    Pd0.827**0.5970.450−0.799**0.674*0.858**0.608
    RR−0.456*−0.871**−0.699**0.332−0.240−0.925**−0.484*
    硬度−0.0760.949**0.777**0.247−0.3330.701**0.203
    脆度0.493*−0.723**−0.700**−0.614**0.647**−0.3020.078
    总糖含量−0.287−0.937**−0.736**0.183−0.139−0.885**−0.469*
    注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。
    下载: 导出CSV 
    | 显示表格

    FD-DIC在维持香菇原有形态及营养素保留方面具有一定优势,但其质构略差而且Va较低;HAD-DIC香菇脆Va最高,但品质最差;HPD-DIC香菇脆Pd最高,色泽、RR和总糖保留方面较优且硬度适中,脆度最高。相比于FD和HAD预干燥,HPD后的香菇疏松结合水和不易流动水所占比例较高,紧密结合水比例较低,有利于DIC瞬间泄压时水分闪蒸,为香菇膨化提供充足驱动力。因此,最适合DIC香菇脆的预干燥方式为HPD。此外,LF-NMR T2弛豫参数及各组分比例与香菇脆品质密切相关,可以通过LF-NMR快速、无损评估香菇脆品质。

  • 图  1   预干燥方式对香菇脆干燥时间及平均干燥速率的影响

    注:相同指标不同预干燥方式之间小写字母不同表示差异显著(P<0.05);图2~图4同。

    Figure  1.   Effect of pre-drying methods on the drying time and average drying rate of L. edodes crisps

    图  2   预干燥方式对香菇脆膨化度及复水比的影响

    Figure  2.   Effect of pre-drying methods on the Pd and RR of L. edodes crisps

    图  3   预干燥方式对香菇脆硬度和脆度的影响

    Figure  3.   Effect of pre-drying methods on the hardness and brittleness of L. edodes crisps

    图  4   预干燥方式对香菇脆总糖含量的影响

    Figure  4.   Effect of pre-drying methods on the total sugar content of L. edodes crisps

    图  5   不同干燥方式对香菇预干燥后弛豫时间的影响

    Figure  5.   Effect of different drying methods on T2 of L. edodes after pre-drying

    表  1   预干燥方式对香菇脆色泽参数的影响

    Table  1   Effect of pre-drying methods on the color parameters of L. edodes crisps

    预干燥方式LabΔE
    HAD25.38±1.46c16.13±3.50a33.13±2.49a30.67±1.47a
    HPD48.11±1.20b7.28±1.13b15.27±1.41c15.26±0.94b
    FD58.53±2.20a4.43±0.63c23.63±1.90b9.85±1.54c
    注:同列肩标小写字母不同表示差异显著(P<0.05);表2同。
    下载: 导出CSV

    表  2   香菇预干燥后LF-NMR弛豫时间及各组分比例

    Table  2   The relaxation time and the proportion of each component of LF-NMR in L. edodes after pre-drying

    预干燥方式弛豫时间(ms)各组分比例(%)
    T2bT21T22T23mT2bmT21mT22mT23
    HAD0.25±0.06a2.25±0.07b27.92±2.14a101.44±5.20a26.43±1.36a70.27±3.75b2.78±0.14a0.52±0.05a
    HPD0.24±0.05a4.79±0.92a16.77±1.26b87.12±6.57b8.29±0.97b88.56±1.79a2.59±0.21a0.56±0.08a
    FD0.23±0.03a1.34±0.05c9.62±0.75c82.01±6.42b28.22±1.27a70.60±2.70b1.26±0.15b0.46±0.05b
    下载: 导出CSV

    表  3   LF- NMR弛豫参数与香菇脆品质的相关性

    Table  3   Correlation between LF-NMR relaxation parameters and quality of L. edodes crisps

    指标T21T22T23mT2bmT21mT22mT23
    Va0.2730.698*0.525−0.1990.0990.700*0.354
    ΔE−0.0580.956**0.791**0.244−0.3280.720**0.212
    Pd0.827**0.5970.450−0.799**0.674*0.858**0.608
    RR−0.456*−0.871**−0.699**0.332−0.240−0.925**−0.484*
    硬度−0.0760.949**0.777**0.247−0.3330.701**0.203
    脆度0.493*−0.723**−0.700**−0.614**0.647**−0.3020.078
    总糖含量−0.287−0.937**−0.736**0.183−0.139−0.885**−0.469*
    注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。
    下载: 导出CSV
  • [1] 崔国梅, 许方方, 李顺峰, 等. 香菇精深加工及生物活性研究进展[J]. 中国农学通报,2021,37(7):132−137. [CUI G M, XU F F, LI S F, et al. Deep processing and bioactivity study of Lentinus edodes research progress[J]. Chinese Agricultural Science Bulletin,2021,37(7):132−137. doi: 10.11924/j.issn.1000-6850.casb2020-0049

    CUI G M, XU F F, LI S F, et al. Deep processing and bioactivity study of Lentinus edodes research progress[J]. Chinese Agricultural Science Bulletin, 2021, 37(7): 132-137. doi: 10.11924/j.issn.1000-6850.casb2020-0049

    [2] 李静, 任心如, 卢雅琪, 等. γ-氨基丁酸对香菇采后品质的影响[J]. 食品工业科技,2021,42(8):301−306. [LI J, REN X R, LU Y Q, et al. Effect of γ-aminobutyric acid on postharvest quality of Lentinus edodes chips[J]. Science and Technology of Food Industry,2021,42(8):301−306.

    LI J, REN X R, LU Y Q, et al. Effect of γ-aminobutyric acid on postharvest quality of Lentinus edodes chips[J]. Science and Technology of Food Industry, 2021, 42(8): 301-306.

    [3] 刘增强, 丁文平, 庄坤, 等. 香菇脆片加工技术的研究进展[J]. 食品工业科技,2018,39(6):345−349. [LIU Z Q, DING W P, ZHUANG K, et al. Research progress in processing technology of Lentinus edodes chips[J]. Science and Technology of Food Industry,2018,39(6):345−349. doi: 10.13386/j.issn1002-0306.2018.06.063

    LIU Z Q, DING W P, ZHUANG K, et al. Research progress in processing technology of Lentinus edodes chips[J]. Science and Technology of Food Industry, 2018, 39(6): 345-349. doi: 10.13386/j.issn1002-0306.2018.06.063

    [4] 陈汉勇, 徐国波, 杨娟, 等. 香菇脆的低温真空油炸工艺优化[J]. 现代食品科技,2021,37(12):197−204. [CHEN H Y, XU G B, YANG J, et al. Optimization of low-temperature vacuum fried process for shiitake mushroom crisps[J]. Modern Food Science and Technology,2021,37(12):197−204. doi: 10.13982/j.mfst.1673-9078.2021.12.0387

    CHEN H Y, XU G B, YANG J, et al. Optimization of low-temperature vacuum fried process for shiitake mushroom crisps[J]. Modern Food Science and Technology, 2021, 37(12): 197-204. doi: 10.13982/j.mfst.1673-9078.2021.12.0387

    [5] 金玮玲, 高虹, 范秀芝, 等. 不同预处理方法对真空冷冻干燥香菇脆片感官品质的影响[J]. 食品科学,2017,38(13):108−112. [JIN W L, GAO H, FAN X Z, et al. Effect of different pretreatment methods on the sensory quality of Lentinus edodes chips produced by vacuum freeze-drying[J]. Food Science,2017,38(13):108−112. doi: 10.7506/spkx1002-6630-201713018

    JIN W L, GAO H, FAN X Z, et al. Effect of different pretreatment methods on the sensory quality of Lentinus edodes chips produced by vacuum freeze-drying [J]. Food Science, 2017, 38(13): 108-112. doi: 10.7506/spkx1002-6630-201713018

    [6] 刘秀凤, 蔡金星, 徐瑞萍. 微波膨化香菇工艺优化[J]. 河北科技师范学院学报,2012,26(1):61−64. [LIU X F, CAI J X, XU R P. Optimization of microwave-puffing Lentinula edodes[J]. Journal of Hebei Normal University of Science & Technology,2012,26(1):61−64. doi: 10.3969/j.issn.1672-7983.2012.01.013

    LIU X F, CAI J X, XU R P. Optimization of microwave-puffing Lentinula edodes[J]. Journal of Hebei Normal University of Science & Technology, 2012, 26(1): 61-64. doi: 10.3969/j.issn.1672-7983.2012.01.013

    [7] 刘增强, 邓林爽, 丁文平, 等. 变温压差膨化干燥香菇脆片的工艺优化[J]. 食品工业科技,2018,39(20):186−193, 199. [LIU Z Q, DENG L S, DING W P, et al. Optimization of varying temperature and pressure puffing drying for Lentinus edodes chips[J]. Science and Technology of Food Industry,2018,39(20):186−193, 199. doi: 10.13386/j.issn1002-0306.2018.20.031

    LIU Z Q, DENG L S, DING W P, et al. Optimization of varying temperature and pressure puffing drying for Lentinus edodes chips[J]. Science and Technology of Food Industry, 2018, 39(20): 186-193, 199. doi: 10.13386/j.issn1002-0306.2018.20.031

    [8] 曹晶晶, 罗晓莉, 何容, 等. 真空油炸食用菌脆片低含油率加工技术[J]. 中国食用菌,2022,41(1):67−69, 75. [CAO J J, LUO X L, HE R, et al. Processing technology of vacuum fried edible fungi chips with low oil content[J]. Edible Fungi of China,2022,41(1):67−69, 75. doi: 10.13629/j.cnki.53-1054.2022.01.013

    CAO J J, LUO X L, HE R, et al. Processing technology of vacuum fried edible fungi chips with low oil content[J]. Edible Fungi of China, 2022, 41(1): 67-69, 75. doi: 10.13629/j.cnki.53-1054.2022.01.013

    [9] 高兴洋, 安辛欣, 赵立艳, 等. 真空低温油炸和真空冷冻干燥对香菇脆片品质及挥发性风味成分的影响[J]. 食品科学,2015,36(17):88−93. [GAO X Y, AN X X, ZHAO L Y, et al. Effects of vacuum frying versus freeze drying on quality and volatile components of shiitake (Lentinula edodes) chips[J]. Food Science,2015,36(17):88−93. doi: 10.7506/spkx1002-6630-201517017

    GAO X Y, AN X X, ZHAO L Y, et al. Effects of vacuum frying versus freeze drying on quality and volatile components of shiitake (Lentinula edodes) chips[J]. Food Science, 2015, 36(17): 88-93. doi: 10.7506/spkx1002-6630-201517017

    [10]

    RANE R, MARAR T, SONAWANE S K, et al. A review on instant controlled pressure drop technology (DIC) assisted with drying technology and effect on quality characteristics[J]. Food Chemistry Advances,2022,1:100114. doi: 10.1016/j.focha.2022.100114

    [11] 郭玲玲, 周林燕, 毕金峰, 等. 香菇中短波红外-脉动压差闪蒸联合干燥工艺研究[J]. 中国食品学报,2018,18(2):155−165. [GUO L L, ZHOU L Y, BI J F, et al. Studies on dry technics of shiitake mushroom using pulsed sudden decompression flashing drying and medium-shortwave infrared radiation[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(2):155−165. doi: 10.16429/j.1009-7848.2018.02.020

    GUO L L, ZHOU L Y, BI J F, et al. Studies on dry technics of shiitake mushroom using pulsed sudden decompression flashing drying and medium-shortwave infrared radiation[J]. Journal of Chinese Institute of Food Science and Technology, 2018, 18(2): 155-165. doi: 10.16429/j.1009-7848.2018.02.020

    [12]

    LI X, BI J F, CHEN Q Q, et al. Texture improvement and deformation inhibition of hot air-dried apple cubes via osmotic pretreatment coupled with instant control pressure drop (DIC)[J]. LWT-Food Science and Technology,2019,101:351−359. doi: 10.1016/j.lwt.2018.11.035

    [13]

    FENG L, XU Y Y, XIAO Y D, et al. Effects of pre-drying treatments combined with explosion puffing drying on the physicochemical properties, antioxidant activities and flavor characteristics of apples[J]. Food Chemistry,2021,338:128015. doi: 10.1016/j.foodchem.2020.128015

    [14]

    SONG H H, BI J F, CHEN Q Q, et al. Structural and health functionality of dried goji berries as affected by coupled dewaxing pre-treatment and hybrid drying methods[J]. International Journal of Food Properties,2018,21(1):2527−2538. doi: 10.1080/10942912.2018.1536148

    [15]

    GUO J, LIU C J, LI Y, et al. Effect of sucrose and citric acid on the quality of explosion puffing dried yellow peach slices[J]. Drying Technology,2022,40(13):2783−2793. doi: 10.1080/07373937.2021.1965161

    [16]

    KÖPRÜALAN Ö, ALTAY Ö, BODRUK A, et al. Effect of hybrid drying method on physical, textural and antioxidant properties of pumpkin chips[J]. Journal of Food Measurement and Characterization,2021,15:2995−3004. doi: 10.1007/s11694-021-00866-1

    [17]

    XU Y Y, LANG X M, XIAO Y D, et al. Study on drying efficiency, uniformity, and physicochemical characteristics of carrot by tunnel microwave drying combined with explosion puffing drying[J]. Drying Technology,2022,40(2):416−429. doi: 10.1080/07373937.2020.1803351

    [18]

    GAO Q, CHEN J N, ZHANG J C, et al. Comparison of explosion puffing drying with other methods on the physicochemical properties and volatiles of yam (Dioscorea opposita thunb.) chips through multivariate analysis[J]. Drying Technology,2022,40(7):1405−1420. doi: 10.1080/07373937.2020.1870488

    [19] 朱凯阳, 任广跃, 段续, 等. 红外辐射技术在农产品干燥中的应用[J]. 食品与发酵工业,2021,47(20):303−311. [ZHU K Y, REN G Y, DUAN X, et al. Application of infrared radiation technology in drying of agricultural products[J]. Food and Fermentation Industry,2021,47(20):303−311. doi: 10.13995/j.cnki.11-1802/ts.026575

    ZHU K Y, REN G Y, DUAN X, et al. Application of infrared radiation technology in drying of agricultural products[J]. Food and Fermentation Industry, 2021, 47(20): 303-311. doi: 10.13995/j.cnki.11-1802/ts.026575

    [20] 刘静, 赵亚, 石启龙. 渗透剂预处理对扇贝柱热泵干燥动力学及品质特性的影响[J]. 食品科学技术学报,2022,40(3):145−156. [LIU J, ZHAO Y, SHI Q L. Effect of pretreatment with osmotic agents on drying kinetics and quality characteristics of heat pump dried scallop adductors[J]. Journal of Food Science and Technology,2022,40(3):145−156. doi: 10.12301/spxb202100766

    LIU J, ZHAO Y, SHI Q L. Effect of pretreatment with osmotic agents on drying kinetics and quality characteristics of heat pump dried scallop adductors[J]. Journal of Food Science and Technology, 2022, 40(3): 145-156. doi: 10.12301/spxb202100766

    [21]

    SUI X L, ZHAO Y, ZHANG X, et al. Hydrocolloid coating pretreatment makes explosion puffing drying applicable in protein-rich foods-A case study of scallop adductors[J]. Drying Technology,2022,40(1):50−64. doi: 10.1080/07373937.2020.1768108

    [22] GB/T 15672-2009. 食用菌中总糖含量的测定[S]. 北京: 中国标准出版社, 2009.

    GB/T 15672-2009. Determination of total sugar content in edible mushrooms[S]. Beijing: Standards Press of China, 2009.

    [23]

    YI J Y, ZHOU M, BI J F, et al. Impacts of pre-drying methods on physicochemical characteristics, color, texture, volume ratio, microstructure and rehydration of explosion puffing dried pear chips[J]. Journal of Food Processing and Preservation,2016,40(5):863−873. doi: 10.1111/jfpp.12664

    [24]

    YI J Y, ZHOU L Y, BI J F, et al. Influence of pre-drying treatments on physicochemical and organoleptic properties of explosion puff dried jackfruit chips[J]. Journal of Food Science and Technology,2016,53(2):1120−1129. doi: 10.1007/s13197-015-2127-2

    [25]

    JIANG N, LIU C J, LI D J, et al. Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption[J]. LWT-Food Science and Technology,2017,82:216−226. doi: 10.1016/j.lwt.2017.04.015

    [26] 张海伟, 鲁加慧, 张雨露, 等. 干燥方式对香菇品质特性及微观结构的影响[J]. 食品科学,2020,41(11):150−156. [ZHANG H W, LU J H, ZHAGN Y L, et al. Effects of drying methods on the quality characteristics and microstructure of shiitake (Lentinus edodes)[J]. Food Science,2020,41(11):150−156. doi: 10.7506/spkx1002-6630-20190612-131

    ZHANG H W, LU J H, ZHAGN Y L, et al. Effects of drying methods on the quality characteristics and microstructure of shiitake (Lentinus edodes)[J]. Food Science, 2020, 41(11): 150-156. doi: 10.7506/spkx1002-6630-20190612-131

    [27] 王娅, 姚利利, 王颉, 等. 不同干燥方式对香菇品质影响的研究[J]. 食品研究与开发,2019,40(19):38−41, 58. [WANG Y, YAO L L, WANG J, et al. Study on the effect of different drying methods on the quality of dried mushrooms[J]. Food Research and Development,2019,40(19):38−41, 58. doi: 10.12161/j.issn.1005-6521.2019.19.007

    WANG Y, YAO L L, WANG J, et al. Study on the effect of different drying methods on the quality of dried mushrooms[J]. Food Research and Development, 2019, 40(19): 38-41, 58. doi: 10.12161/j.issn.1005-6521.2019.19.007

    [28] 徐晓飞, 向莹, 张小爽, 等. 不同干燥方式对香菇品质的影响[J]. 食品工业科技,2012,33(17):259−262. [XU X F, XIANG Y, ZHANG X S, et al. Effect of different drying methods on quality of mushroom[J]. Science and Technology of Food Industry,2012,33(17):259−262. doi: 10.13386/j.issn1002-0306.2012.17.037

    XU X F, XIANG Y, ZHANG X S, et al. Effect of different drying methods on quality of mushroom[J]. Science and Technology of Food Industry, 2012, 33(17): 259-262. doi: 10.13386/j.issn1002-0306.2012.17.037

    [29] 赵圆圆, 易建勇, 毕金峰, 等. 干燥方式对复水香菇感官、质构及营养品质的影响[J]. 食品科学,2019,40(3):101−108. [ZHAO Y Y, YI J Y, BI J F, et al. Sensory, texture and nutritional quality of dried shiitake mushrooms (Lentinus edodes) as affected by different drying methods[J]. Food Science,2019,40(3):101−108. doi: 10.7506/spkx1002-6630-20171108-091

    ZHAO Y Y, YI J Y, BI J F, et al. Sensory, texture and nutritional quality of dried shiitake mushrooms (Lentinus edodes) as affected by different drying methods[J]. Food Science, 2019, 40(3): 101-108. doi: 10.7506/spkx1002-6630-20171108-091

    [30]

    YI J Y, LYU J, BI J F, et al. Hot air drying and freeze drying pre-treatments coupled to explosion puffing drying in terms of quality attributes of mango, pitaya, and papaya fruit chips[J]. Journal of Food Processing and Preservation,2017,41(6):e13300. doi: 10.1111/jfpp.13300

    [31] 刘宗博, 张钟元, 李大婧, 等. 双孢菇远红外干燥过程中内部水分的变化规律[J]. 食品科学,2016,37(9):82−86. [LIU Z B, ZHANG Z Y, LI D J, et al. Analysis of moisture change during far-infrared drying of Agaricus bisporus[J]. Food Science,2016,37(9):82−86. doi: 10.7506/spkx1002-6630-201609016

    LIU Z B, ZHANG Z Y, LI D J, et al. Analysis of moisture change during far-infrared drying of Agaricus bisporus[J]. Food Science, 2016, 37(9): 82-86. doi: 10.7506/spkx1002-6630-201609016

图(5)  /  表(3)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  43
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-27
  • 网络出版日期:  2023-07-03
  • 刊出日期:  2023-08-23

目录

/

返回文章
返回