• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

过量SO2导致葡萄落粒机制研究进展

张瑞家, 吴培文, 熊佳欣, 朱本忠

张瑞家,吴培文,熊佳欣,等. 过量SO2导致葡萄落粒机制研究进展[J]. 食品工业科技,2023,44(16):464−469. doi: 10.13386/j.issn1002-0306.2022110224.
引用本文: 张瑞家,吴培文,熊佳欣,等. 过量SO2导致葡萄落粒机制研究进展[J]. 食品工业科技,2023,44(16):464−469. doi: 10.13386/j.issn1002-0306.2022110224.
ZHANG Ruijia, WU Peiwen, XIONG Jiaxin, et al. Advances in the Mechanism of Berry Abscission Resulted from Excess Sulfur Dioxide to Table Grapes[J]. Science and Technology of Food Industry, 2023, 44(16): 464−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110224.
Citation: ZHANG Ruijia, WU Peiwen, XIONG Jiaxin, et al. Advances in the Mechanism of Berry Abscission Resulted from Excess Sulfur Dioxide to Table Grapes[J]. Science and Technology of Food Industry, 2023, 44(16): 464−469. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110224.

过量SO2导致葡萄落粒机制研究进展

基金项目: 国家重点研发计划项目(2022YFD2100103);国家自然科学基金(32272373);国家自然科学基金(31871847)。
详细信息
    作者简介:

    张瑞家(1999−),男,硕士研究生,研究方向:果蔬采后生理与分子生物学,E-mail:1577475775@qq.com

    通讯作者:

    朱本忠(1975−),男,博士,教授,研究方向:果蔬采后生理和分子生物学,E-mail:zbz@cau.edu.cn

  • 中图分类号: TS255.3

Advances in the Mechanism of Berry Abscission Resulted from Excess Sulfur Dioxide to Table Grapes

  • 摘要: 二氧化硫(SO2)处理是目前应用最广泛的葡萄果实贮藏保鲜方式,具有抑菌效果好、使用方便、成本低廉等多种优点。但环境中过量的SO2会对葡萄果实造成严重伤害,尤其是果实落粒和漂白现象等,造成较大的损失。针对环境中过量SO2导致的葡萄果实落粒问题,本文综述了国内外相关研究进展,从影响气孔开度、破坏组织结构、改变细胞壁降解酶活性、影响激素含量和活性氧水平等五个方面对葡萄落粒产生机制进行了探讨,最后对SO2在葡萄果实保鲜上的研究和应用前景进行了展望,以期为SO2精确应用于葡萄保鲜,实现减损增效提供理论基础。
    Abstract: At present, sulfur dioxide (SO2) treatment is the most widely used storage and fresh-keeping method of grape fruits, which has many advantages such as good bacteriostatic effect, convenient use and low cost. However, excessive SO2 in the environment will lead to serious damage to grape fruits, especially the phenomenon of fruit shattering and bleaching, resulting in greater losses. In view of the problem of grape berry abscission caused by excessive SO2 in the environment, this paper reviewes the relevant research progress at home and abroad, and discussed the mechanism of grape berry abscission from five aspects: Affecting stomata opening, damaging tissue structure, changing cell wall degrading enzyme activity, affecting hormone content and reactive oxygen species level. Finally, the research and application prospects of SO2 in grape fruit preservation are prospected in order to provide a theoretical basis for the accurate application of SO2 in grape preservation and the realization of loss reduction and efficiency improvement.
  • 我国是世界最大的葡萄生产国和消费国,2020年产量达到1431万吨[1],其中鲜食葡萄占我国葡萄总产量的80%左右[2]。但是,由于鲜食葡萄含水量高、易染真菌[3],在贮藏过程中容易发生腐烂、干梗和褐变等问题[4]。SO2处理是一种典型的葡萄化学保鲜方式,在葡萄贮藏过程中对致病真菌的生长繁殖具有强烈的抑制作用,能够减少葡萄采后灰霉菌、交链孢霉菌和镰刀菌等引起的腐烂和软化[5],并且可以降低葡萄自身呼吸强度来减少营养物质的损耗[6]。但SO2在使用过程中的释放速度和释放量不易控制[7],并且不同品种葡萄对SO2耐受程度有非常大差异,使得SO2在采后贮藏使用中容易发生过量问题而导致果粒脱落[8],从而影响到鲜食葡萄的商品销售,造成较大的经济损失。本文综述了SO2对葡萄气孔开度、离区组织结构、细胞壁降解酶活性、激素含量和活性氧水平等方面的影响,总结了目前关于过量SO2影响葡萄果实脱落的潜在机制,为精准使用和改进SO2保鲜方式提供理论支撑。

    目前在物理方法、化学方法、生物方法以及多法联用等方面都出现了一些新型葡萄贮藏保鲜方法[9],但是SO2处理仍然是最经济、高效的保鲜方式[10]。SO2保鲜方式一般分为熏蒸法和缓释法。熏蒸法主要是在密闭空间内直接燃烧硫磺产生SO2气体,对罩上塑料薄膜成垛的葡萄熏蒸20~30 min,随后进行通风排出SO2气体,在之后贮藏过程中每间隔7~10 d再熏蒸30 min[11];缓释法主要使用亚硫酸盐结合粘结剂、助流剂、崩解剂、润滑剂和功能助剂[7],采用不同包装工艺制成片剂、粉剂和释放纸[12]。缓释法中SO2释放分为两个阶段:第一阶段在葡萄包装1~2 d内释放较高浓度SO2进行表面杀菌;第二个阶段为缓慢释放,能在长时间运输和贮藏过程中抑制致病菌生长繁殖[13]。熏蒸法和缓释法都存在释放不稳定的情况,容易造成短时或局部SO2过量,引起葡萄落粒[7]。针对适量SO2能够维持良好的果实品质和过量SO2会造成严重生理伤害的问题,确保贮藏过程中保持合适的SO2浓度一直是研究的重点。现阶段SO2保鲜方式的研究主要集中在调整不同的保鲜剂量、改善复合膜材料以及结合其他保鲜方式,去实现SO2长效、稳定、适量的释放,最终达到减少葡萄落粒。

    目前美国食品药品监督管理局(Food and Drug Administration,FDA)规定鲜水果中SO2残留量不大于10 mg/kg,我国GB 2760-2014《食品安全国家标准 食品添加使用标准》规定鲜水果SO2残留量标准是不大于50 mg/kg[14]。许多研究表明,不同品种、不同成熟度的葡萄对SO2敏感度不同[15-17],容易产生不同程度的过量问题。葡萄中过量的SO2残留不仅会导致落粒、漂白[18]等品质问题,还会对人体健康造成危害。SO2保鲜剂产品对不同品种葡萄的适用性可能会产生差异,针对不同品种、产地的葡萄通常需要调整SO2保鲜剂的释放效果来满足实际生产中的贮藏保鲜需求,例如在0 ℃下‘阳光玫瑰’葡萄使用SO2缓释剂(CT系列)的落粒率始终低于对照组[19],而在25 ℃和RH 60%下使用CT化学保鲜剂处理‘巨峰’葡萄模拟短途运输和短期贮藏,从第3 d开始SO2组落粒率却显著高于对照组[15]。另外,处于过量SO2气体贮藏环境中的‘巨峰’葡萄出现落粒率增加的情况,而1.5%壳聚糖涂膜处理能抑制SO2引起的葡萄采后落粒[8]。因此,不同条件下SO2保鲜中存在的落粒问题成为葡萄保鲜研究中关注的重点。

    落粒是指葡萄果粒与果穗分离而产生的一种脱落现象[20],是一个发生在果梗离区(Abscissionzone,AZ)且高度调控的生理过程,与组织代谢失调[21]和细胞衰老[22]的进程密切相关,受到环境和自身内部因素的影响[23]。在实际生产应用中由于SO2释放量和释放速度不易控制,容易发生SO2过量问题导致出现落粒。下面将从图1五个方面阐述过量SO2引起葡萄落粒产生的机制。

    图  1  过量SO2影响葡萄落粒的机制
    Figure  1.  Mechanism of excessive sulfur dioxide affecting berry abscission

    SO2是通过气孔进入葡萄离区从而产生落粒等伤害见图2。葡萄浆果表面含有少量的气孔,并且具有一层蜡质层,但果梗上存在大量的气孔和皮孔,是葡萄与外界进行气体交换的主要通道。对‘红地球’、‘无核白’、‘木纳格’和‘巨峰’四个葡萄品种的果梗结构和SO2积累量的差异研究表明,果梗的含水量和气孔面积与SO2积累量呈现显著正相关关系,并且果梗和穗梗是SO2积累量最多的两个部位[24]。Wu等[25]研究也发现SO2主要通过葡萄果梗和果蒂进入葡萄离区,而葡萄离区的亚硫酸盐残留量与葡萄落粒率呈现正相关关系。

    图  2  SO2进入葡萄的途径
    Figure  2.  Pathway of SO2 into grapes

    气孔是植物抗逆反应的第一道防线,适当逆境条件会造成气孔关闭,但当亚硫酸根离子积累到一定浓度便会影响气孔的正常开启和关闭[26]。用不同浓度(0~5 mmol/L)Na2SO3/NaHSO3溶液处理甘薯的表皮,可迅速提高内源性H2S和NO的水平,以剂量依赖的方式诱导气孔关闭[27]。在蚕豆中低浓度(0.0001~0.1 μmol/L)亚硫酸通过降低内源性脱落酸(Abscisic acid,ABA)的水平拮抗其作用,促进气孔开放;反之,高浓度(10 μmol/L)的亚硫酸通过增加内源性ABA的水平,抑制气孔开放[28]。在黄花菜中不同浓度(0~5 mmol/L)Na2SO3/NaHSO3溶液以剂量依赖的方式降低保卫细胞活力,诱导保卫细胞程序性死亡导致气孔不可逆转的关闭[29]。Li等[30]同样发现SO2熏蒸处理导致拟南芥叶片产生过氧化氢(Hydrogen peroxide,H2O2),使得叶片发生气孔关闭和细胞凋亡。当环境SO2浓度低时,与耐受有关的生化特征成为植物胁迫反应的主体;当SO2浓度较高时,避免SO2大量进入植物组织占据主要地位。

    在鲜食葡萄中SO2处理产生的残留主要在果梗和穗梗的离区细胞中[24],并且一般以亚硫酸、亚硫酸氢根、亚硫酸离子形式存在。这些物质具有很强的反应活性,可以穿透细胞膜破坏蛋白质和酶结构中的二硫键使其变性或者酶活性改变[31-32]。通过对‘无核白’葡萄的组织解剖结构进行观察,其SO2伤害主要始于细胞膜系统的破坏[33]。SO2处理使得葡萄内部脂氧合酶(Lipoxygenase,LOX)活性升高、丙二醛(Malondialdehyde,MDA)含量及组织相对电导率增加,丙二醛和膜蛋白交联聚合促使膜相结构转化为凝胶状态[34]。这些变化说明SO2使葡萄细胞膜发生过氧化,细胞膜受到损伤进而透性增加[26]。在SO2与壳聚糖复合处理进行葡萄保鲜时,发现单独使用SO2使得‘巨峰’葡萄离区结构变化大于复合处理,当贮藏4 d后其离区细胞已明显呈絮状化状态存在[25]。另外,SO2溶于水造成的酸性环境也可能直接对植物细胞壁结构造成破坏。SO2-乙醇-水(SEW)预处理竹渣中发现SO2生成的亚硫酸能够通过磺化作用使半纤维素和木质素的溶解性增强,导致细胞壁结构遭到破坏[35]。因此,SO2造成葡萄离区组织结构的破坏主要是由于形成了亚硫酸盐,并且使离区细胞的细胞膜发生了变性,形成颗粒状或絮状物质,最终发生质壁分离导致离区细胞结构松散,葡萄果粒易发生脱落。

    细胞壁主要由纤维素、半纤维素、木质素和果胶构成,并伴有结构蛋白、酚类、脂肪酸及金属离子的存在[36]。植物细胞壁分为胞间层、初生壁和次生壁三部分。葡萄脱落过程中主要涉及到离层细胞中胶层的水解和薄壁细胞纤维素壁分解[37]。例如,‘无核白’葡萄落粒增加的同时,其离区的多聚半乳糖醛酸酶(Polygalacturonase,PG)和果胶酯酶(Pectinesterase,PE)活性逐渐增加,并且二者间呈显著正相关[38]。同样,SO2使‘巨峰’葡萄离区中的细胞壁降解酶——PG和纤维素酶(Cellulase,Cx)活性明显升高[25]。另外,对SO2处理后的‘克瑞森’葡萄进行转录组学分析发现,木葡聚糖内转糖苷酶/水解酶(Xyloglucan endotransglucosylase/hydrolase,XTH)和膨胀素(Expansin,EXP)基因表达被强烈上调,其中XTH能够水解细胞壁中的半纤维素,EXP能够打破纤维素、半纤维素和果胶之间的非共价键以及诱导微纤维移位;同时,果胶甲酯酶(Pectin methylesterases,PME)、果胶乙酰酯酶(Pectin acetylesterases,PAE)、PG和脱水应答蛋白基因表达被上调,这些结果表明果胶作为中胶层的主要成分被降解[39]。在拟南芥的研究中也发现其细胞壁降解酶受到SO2处理的影响,PME、PAE、XTH和EXP基因表达出现上调[40]。因此,SO2能够影响细胞壁修饰酶和水解酶基因的表达和酶活性的改变,从而参与到葡萄落粒过程中。

    葡萄受到发育和外界环境刺激产生的浆果脱落,通常都是由激素介导的[41]。果穗采收后断绝了来自茎尖、叶片和根中促进生长的激素供给,同时葡萄果粒离区的分化受到乙烯和生长素(auxin,IAA)的影响[42]。当激素平衡状态被打破,细胞内产生脱落信号并传递给离区,细胞壁降解机制被激活,脱落开始进行[43]。另外植物激素对于器官脱落的调节通常是协同发挥作用的[44]。已经有研究表明高等植物通过植物激素信号转导网络对于SO2胁迫产生响应。Giraud等[39]通过转录组分析揭示SO2引起葡萄内参与生长素、乙烯和茉莉酸信号的组分mRNA被显著上调。在SO2引起的‘巨峰’葡萄落粒中,通过转录组研究发现SO2诱导激素信号转导、糖代谢、能量代谢和细胞壁代谢途径相关基因的表达[45]。另外,Li等[30]研究证明拟南芥对SO2胁迫响应通过miRNAs完成,这些miRNAs基因的启动子序列中包含多种植物激素反应元件,例如脱落酸响应元件(ABREs)、赤霉素响应元件(TATC-box,P-box和GARE-motif)、水杨酸响应元件(TCA-element)、乙烯响应元件(ERE)和茉莉酸甲酯响应元件(CGTCA-motif)[30]。另有研究发现不同剂量SO2处理对葡萄的激素水平会产生不同的影响。当使用一张‘农大牌’葡萄保鲜纸处理5 kg‘无核白’葡萄时,葡萄果梗、穗梗及果粒中IAA和GA均有明显增加,ABA略有降低,乙烯释放量明显较少;而当保鲜纸增加到三张时,ABA含量明显增加,乙烯释放呈现显著增加的趋势,并且加速葡萄果粒的脱落[46]。葡萄体内应激反应是由激素的平衡状态被破坏所产生的,不同剂量的SO2能够通过影响激素水平产生抑制脱落或促进脱落的信号。另外,由于不同葡萄品种对SO2的耐受性有所不同,SO2剂量和葡萄品种这两个因素可能都对内部激素含量的变化情况产生复杂多样的影响,这需要进一步的深入探究。

    葡萄在过量SO2的逆境环境下还会导致过多的活性氧(Reactive oxygen species,ROS)积累[47],包括单线态氧(1O2)、超氧阴离子(O2·)、过氧化氢(H2O2)和羟自由基(·OH)等[48]。例如‘巨峰’葡萄和‘红地球’葡萄受到SO2伤害时,其活性氧清除体系中超氧化物歧化酶(Superoxide dismutase,SOD)和过氧化氢酶(Catalase,CAT)两种酶活性降低,同时活性氧水平、谷胱甘肽(GSH)含量升高[49]。在其它植物中也发现SO2影响活性氧清除体系组分的改变。例如拟南芥暴露于SO2环境中72 h,谷胱甘肽过氧化物酶(Glutathione peroxidase,GPX)、过氧化物酶(Peroxisome,POD)、SOD活性上升;但当时间延长到120 h时,SOD、GPX活性下降,ROS、MDA含量升高膜脂发生过氧化[50]。在过氧化物酶体中亚硫酸氧化酶(Sulfite oxidase,SO)也能够通过降解亚硫酸盐产生硫酸盐和H2O2[15,51]。葡萄细胞内的ROS处于一种动态平衡的状态,细胞中的抗氧化酶系统在SO2胁迫响应时对ROS水平变化发挥着重要的作用[49]。适量浓度SO2刺激细胞产生较低水平的ROS,而ROS作为信号分子能够刺激抗氧化酶基因的表达,增强细胞的抗氧化防御能力[52];但在高浓度或长时间的SO2环境下,细胞抗氧化系统难以应对,对ROS清除能力有限,导致细胞发生氧化损伤,细胞物化结构发生改变,从而最终导致葡萄果实与果梗分离[53-54]

    近年来,随着消费者对果蔬品质的要求不断提高,SO2处理作为葡萄主要保鲜方式,贮藏期间的落粒问题成为葡萄贮藏保鲜的研究重点。本文综合分析目前国内外学者关于过量SO2对葡萄落粒影响的研究,其机制主要表现在SO2可通过调节果梗上气孔开度、破坏离区组织结构、改变细胞壁降解酶活性、影响激素含量、影响活性氧水平等多种途径,最终导致葡萄果实脱落的现象发生。未来对SO2引起葡萄果实脱落的研究应从单一的关键酶、激素含量、细胞结构等水平的影响向代谢组学、信号通路等系统研究方向发展。另外,还应着力于探究SO2剂量与落粒相关的细胞壁降解酶、激素合成及信号转导途径、ROS清除途径的基因表达差异等方面,明确不同SO2剂量影响葡萄落粒相关基因表达的机制;激素等外源处理方式能显著影响细胞壁代谢关键基因的表达[55-56],也为降低SO2引起葡萄果实脱落提供更多的方法选择,相信不久的将来SO2在葡萄贮藏过程中产生的弊端将会得到解决。

  • 图  1   过量SO2影响葡萄落粒的机制

    Figure  1.   Mechanism of excessive sulfur dioxide affecting berry abscission

    图  2   SO2进入葡萄的途径

    Figure  2.   Pathway of SO2 into grapes

  • [1] 中国人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社. 2021

    NBSPRC. China statistical yearbook[M]. Beijing: China Statistics Press, 2021.

    [2] 穆维松, 冯建英, 田东, 等. 我国鲜食葡萄产业的国际贸易与国内需求形势[J]. 中国果树,2019(2):5−10. [MU W S, FENG J Y, TIAN D, et al. The international trade and domestic demand of the table grape industry in China[J]. China Fruits,2019(2):5−10.

    MU W S, FENG J Y, TIAN D, et al. The international trade and domestic demand of the table grape industry in China[J]. China Fruits, 2019(2): 5-10.

    [3] 朱志强, 集贤, 张平, 等. 鲜食葡萄贮运期黑斑病害致病病原菌分离鉴定[J]. 包装工程,2020,41(21):31−37. [ZHU Z Q, JI X, ZHANG P, et al. Isolation and identification of pathogens causing grape blackspot during storage and transportation[J]. Packaging Engineering,2020,41(21):31−37.

    ZHU Z Q, JI X, ZHANG P, et al. Isolation and identification of pathogens causing grape blackspot during storage and transportation[J]. Packaging Engineering, 2020, 41(21): 31-37.

    [4]

    LIU P, LI D L, XU W C, et al. Research on SO2 controlled release packaging on the preservation performance of ‘kyoho’ grapes[J]. Applied Mechanics and Materials,2015,731:369−373. doi: 10.4028/www.scientific.net/AMM.731.369

    [5]

    YOUSSEF K, JUNIOR O J, MUHLBEIER D T, et al. Sulphur dioxide pads can reduce gray mold while maintaining the quality of clamshell-packaged ‘brs nubia’ seeded table grapes grown under protected cultivation[J]. Horticulturae,2020,6(2):20. doi: 10.3390/horticulturae6020020

    [6] 集贤, 张平, 朱志强, 等. SO2不同保鲜处理对醉金香葡萄贮藏效果的影响[J]. 包装工程,2020,41(7):1−9. [JI X, ZHANG P, ZHU Z Q, et al. Effects of different SO2 preservation treatments on "Zuijinxiang" grape during storage[J]. Packaging Engineering,2020,41(7):1−9.

    JI X, ZHANG P, ZHU Z Q, et al. Effects of different SO2 preservation treatments on "zuijinxiang" grape during storage[J]. Packaging Engineering, 2020, 41(7): 1-9.

    [7] 焦旋, 高振峰, 冯志宏, 等. 二氧化硫精准释放葡萄保鲜片的研制与应用[J]. 食品工业科技,2021,42(6):297−303, 356. [JIAO X, GAO Z F, FENG Z H, et al. Development and evaluation of grape preservative tablets with precise sulfur dioxide release[J]. Science and Technology of Food Industry,2021,42(6):297−303, 356.

    JIAO X, GAO Z F, FENG Z H, et al. Development and evaluation of grape preservative tablets with precise sulfur dioxide release[J]. Science and Technology of Food Industry, 2021, 42(6): 297-303, 356.

    [8] 陈仁驰, 吴培文, 许蕙金兰, 等. SO2结合壳聚糖处理对采后鲜食葡萄品质的影响[J]. 食品研究与开发,2018,39(19):185−189. [CHEN R C, WU P W, XU H J L, et al. Effect of SO2 combined with chitosan on the quality of fresh grape[J]. Food Research and Development,2018,39(19):185−189.

    CHEN R C, WU P W, XU H J L, et al. Effect of SO2 combined with chitosan on the quality of fresh grape[J]. Food Research and Development, 2018, 39(19): 185-189.

    [9] 刘程宏, 段罗顺, 柴丽娜, 等. 鲜食葡萄贮藏保鲜技术研究进展[J]. 食品安全质量检测学报,2019,10(16):5376−5381. [LIU C H, DUAN L S, CHAI L N, et al. Research advances on storage and fresh-keeping technology of table grape[J]. Journal of Food Safety,2019,10(16):5376−5381.

    LIU C H, DUAN L S, CHAI L N, et al. Research advances on storage and fresh-keeping technology of table grape[J]. Journal of Food Safety, 2019, 10(16): 5376-5381.

    [10] 孟创鸽, 曹红霞, 韩峪, 等. 葡萄贮藏保鲜技术研究进展[J]. 黑龙江农业科学,2022(5):102−106. [MENG C H, CAO H X, HAN Y, et al. Research progress of grape storage and preservation technology[J]. Heilongjiang Agricultural Sciences,2022(5):102−106.

    MENG C H, CAO H X, HAN Y, et al. Research progress of grape storage and preservation technology[J]. Heilongjiang Agricultural Sciences, 2022(5): 102-106.

    [11] 李杰, 魏佳, 张政, 等. 二氧化硫(SO2)熏蒸改善木纳格葡萄的采后品质[J]. 现代食品科技,2020,36(2):114−121. [LI J, WEI J, ZHANG Z et al. Improving on postharvest quality of munag grape berries fumigated by sulfur dioxide (SO2)[J]. Modern Food Science & Technology,2020,36(2):114−121.

    LI J, WEI J, ZHANG Z et al. Improving on postharvest quality of munag grape berries fumigated by sulfur dioxide (SO2)[J]. Modern Food Science & Technology, 2020, 36(2): 114-121.

    [12] 佟继旭, 朱志强, 赵瑞瑞, 等. 不同SO2保鲜剂对红地球葡萄采后贮藏品质的影响[J]. 农产品质量与安全,2019(1):19−23. [DONG J X, ZHU Z Q, ZHAO R R, et al. Effect of different SO2 preservatives on postharvest storage quality of red globe grapes[J]. Quality and Safety of Agro-products,2019(1):19−23.

    DONG J X, ZHU Z Q, ZHAO R R, et al. Effect of different SO2 preservatives on postharvest storage quality of red globe grapes[J]. Quality And Safety Of Agro-Products, 2019(1): 19-23.

    [13]

    AHMED S, ROBERTO S R, DOMINGUES A R, et al. Effects of different sulfur dioxide pads on botrytis mold in ‘Italia’ table grapes under cold storage[J]. Horticulturae,2018,4(4):29. doi: 10.3390/horticulturae4040029

    [14] 佟继旭, 朱志强, 钱永忠. 不同贮藏条件下葡萄的SO2残留及膳食风险评估[J]. 食品科学,2020,41(1):163−167. [TONG J X, ZHU Z Q, QIAN Y Z. SO2 residue and potential dietary health risk assessment in grapes under different storage conditions[J]. Food Science,2020,41(1):163−167.

    TONG J X, ZHU Z Q, QIAN Y Z. SO2 residue and potential dietary health risk assessment in grapes under different storage conditions[J]. Food Science, 2020, 41(1): 163-167.

    [15]

    CHEN Y P, LI Z B, ETTOUMI F E, et al. The detoxification of cellular sulfite in table grape under SO2 exposure: Quantitative evidence of sulfur absorption and assimilation patterns[J]. Journal of Hazardous Materials,2022,439:129685. doi: 10.1016/j.jhazmat.2022.129685

    [16] 颜孙安, 姚清华, 林香信, 等. 成熟度对红地球葡萄品质的影响[J]. 食品安全质量检测学报,2020,11(14):4581−4588. [YAN S A, YAO Q H, LIN X X, et al. Effects of maturity on quality of red globe grape (Vitis vinifera L.)[J]. Journal of Food Safety & Quality,2020,11(14):4581−4588.

    YAN S A, YAO Q H, LIN X X, et al. Effects of maturity on quality of red globe grape (Vitis vinifera L.)[J]. Journal of Food Safety & Quality, 2020, 11(14): 4581-4588.

    [17] 潘照, 周文化, 肖玥惠子. 基于主成分分析的不同种鲜食葡萄品质评价[J]. 食品与机械,2018,34(9):139−146. [PAN Z, ZHOU W H, XIAO Y H Z, et al. Quality evaluation of different table grape based on principal component analysis[J]. Food & Machinery,2018,34(9):139−146.

    PAN Z, ZHOU W H, XIAO Y H Z, et al. Quality evaluation of different table grape based on principal component analysis[J]. Food & Machinery, 2018, 34(9): 139-146.

    [18]

    XIAO X Q, FU Z T, ZHU Z Q, et al. Improved preservation process for table grapes cleaner production in cold chain[J]. Journal of Cleaner Production,2019,211:1171−1179. doi: 10.1016/j.jclepro.2018.11.279

    [19] 张晓锋, 娄玉穗, 尚泓泉, 等. 不同保鲜处理对"阳光玫瑰"葡萄贮藏品质及生理生化的影响[J]. 河南农业大学学报,2019,53(5):698−703. [ZHANG X F, LOU Y H, SHANG H Q, et al. Effects of different preservatives treatments on storage quality and physiological-biochemical index of Shine Muscat grape[J]. Journal of Henan Agricultural University,2019,53(5):698−703.

    ZHANG X F, LOU Y H, SHANG H Q, et al. Effects of different preservatives treatments on storage quality and physiological-biochemical index of Shine Muscat grape[J]. Journal of Henan Agricultural University, 2019, 53(5): 698-703.

    [20]

    FIDELIBUS M W, PETRACEK P, MCARTNEY S. Jasmonic acid activates the fruit-pedicel abscission zone of "thompson seedless" grapes, especially with co-application of 1-aminocyclopropane-1-carboxylic acid[J]. Plants,2022,11(9):1245. doi: 10.3390/plants11091245

    [21]

    QIU Z L, WEN Z, YANG K, et al. Comparative proteomics profiling illuminates the fruitlet abscission mechanism of sweet cherry as induced by embryo abortion[J]. International Journal of Molecular Sciences,2020,21(4):1200. doi: 10.3390/ijms21041200

    [22]

    XU P P, CHEN H Y, CAI W M. Transcription factor cdf4 promotes leaf senescence and floral organ abscission by regulating abscisic acid and reactive oxygen species pathways in arabidopsis[J]. EMBO reports,2020,21(7):e48967. doi: 10.15252/embr.201948967

    [23]

    PATHARKAR O R, WALKER J C. Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence[J]. Plant Science,2019,284:25−29. doi: 10.1016/j.plantsci.2019.03.016

    [24]

    YUAN Y Y, WEI J, XING S J, et al. Sulfur dioxide (SO2) accumulation in postharvest grape: The role of pedicels of four different varieties[J]. Postharvest Biology and Technology,2022,190:111953. doi: 10.1016/j.postharvbio.2022.111953

    [25]

    WU P W, XIN F Y, XU H J L, et al. Chitosan inhibits postharvest berry abscission of ‘kyoho’ table grapes by affecting the structure of abscission zone, cell wall degrading enzymes and SO2 permeation[J]. Postharvest Biology and Technology,2021,176:111507. doi: 10.1016/j.postharvbio.2021.111507

    [26] 高登涛, 李秋利, 魏志峰, 等. 植物对二氧化硫胁迫反应与应答机制研究进展[J]. 广东农业科学,2016,43(11):27−35. [GAO D T, LI Q L, WEI Z F, et al. Research progress on damage reaction and response mechanism of plants to sulfur dioxide stress[J]. Guangdong Agricultural Sciences,2016,43(11):27−35.

    GAO D T, LI Q L, WEI Z F, et al. Research progress on damage reaction and response mechanism of plants to sulfur dioxide stress[J]. Guangdong Agricultural Sciences, 2016, 43(11): 27-35.

    [27]

    HU K D, TANG J, ZHAO D L, et al. Stomatal closure in sweet potato leaves induced by sulfur dioxide involves H2S and no signaling pathways[J]. Biologia Plantarum,2014,58(4):676−680. doi: 10.1007/s10535-014-0440-7

    [28]

    TAYLOR J S, REID D M, RICHARD P P. Mutual antagonism of sulfur dioxide and abscisic acid in their effect on stomatal aperture in broad bean (Vicia faba L.) epidermal strips 1[J]. Plant Physiology,1981,68(6):1504−1507. doi: 10.1104/pp.68.6.1504

    [29]

    WEI A L, XIN X J, WANG Y S, et al. Signal regulation involved in sulfur dioxide-induced guard cell apoptosis in hemerocallis fulva[J]. Ecotoxicology and Environmental Safety,2013,98:41−45. doi: 10.1016/j.ecoenv.2013.09.029

    [30]

    LI L H, XUE M Z, YI H L. Uncovering microrna-mediated response to SO2 stress in arabidopsis thaliana by deep sequencing[J]. Journal of Hazardous Materials,2016,316:178−185. doi: 10.1016/j.jhazmat.2016.05.014

    [31]

    ZHANG X C, LI D, WANG Y, et al. Fumigation of SO2 in combination with elevated CO2 regulate sugar and energy metabolism in postharvest strawberry fruit[J]. Postharvest Biology and Technology,2022,192:112021. doi: 10.1016/j.postharvbio.2022.112021

    [32]

    WEI A L, FU B C, WANG Y S, et al. Involvement of no and ros in sulfur dioxide induced guard cells apoptosis in tagetes erecta[J]. Ecotoxicology and Environmental Safety,2015,114:198−203. doi: 10.1016/j.ecoenv.2015.01.024

    [33] 葛毅强, 张维一, 叶强. SO2对鲜食葡萄一些酶活性营养成分及膜透性的影响[J]. 新疆农业大学学报,1997(2):48−52. [GE Y Q, ZHANG W Y, YE Q, et al. Effect of SO2 on some enzymatic nutrients and membrane permeability of fresh grape[J]. Journal of Xinjiang Agricultural University,1997(2):48−52.

    GE Y Q, ZHANG W Y, YE Q, et al. Effect of SO2 on some enzymatic nutrients and membrane permeability of fresh grape[J]. Journal of Xinjiang Agricultural University, 1997(2): 48-52.

    [34] 孔秋莲, 修德仁, 胡文玉, 等. 葡萄贮藏中SO2伤害与膜脂过氧化的关系[J]. 果树学报,2008,25(3):322−326. [KONG Q L, XIU D R, HU W Y, et al. Studies on relationship between SO2 injury and membrane lipid peroxide in grape during storage[J]. Journal of Fruit Science,2008,25(3):322−326.

    KONG Q L, XIU D R, HU W Y, et al. Studies on relationship between SO2 injury and membrane lipid peroxide in grape during storage[J]. Journal of Fruit Science, 2008, 25(3): 322-326.

    [35]

    HUANG C X, MA J M, LIANG C, et al. Influence of sulfur dioxide-ethanol-water pretreatment on the physicochemical properties and enzymatic digestibility of bamboo residues[J]. Bioresource Technology,2018,263:17−24. doi: 10.1016/j.biortech.2018.04.104

    [36] 张蕊, 李来庚. 植物细胞壁信号研究进展[J]. 植物生理学报,2018,54(8):1254−1262. [ZHANG R, LI L G. Research progress of the plant cell wall signaling[J]. Plant Physiology Communications,2018,54(8):1254−1262.

    ZHANG R, LI L G. Research progress of the plant cell wall signaling[J]. Plant Physiology Communications, 2018, 54(8): 1254-1262.

    [37]

    LEE YUREE. More than cell wall hydrolysis: Orchestration of cellular dynamics for organ separation[J]. Current Opinion in Plant Biology,2019,51:37−43. doi: 10.1016/j.pbi.2019.03.009

    [38] 陈发河, 吴光斌, 冯作山, 等. 葡萄贮藏过程中落粒与离区酶活性变化及植物生长调节物质的关系[J]. 植物生理与分子生物学学报,2003,29(2):133−140. [CHEN F H, WU G B, FENG Z S, et al. The relation of grape berry abscission to changes of enzyme activity in abscission zone and plant growth regulators during storage[J]. Journal of Plant Physiology and Molecular Biology,2003,29(2):133−140.

    CHEN F H, WU G B, FENG Z S, et al. The relation of grape berry abscission to changes of enzyme activity in abscission zone and plant growth regulators during storage[J]. Journal of Plant Physiology and Molecular Biology, 2003, 29(2): 133-140.

    [39]

    GIRAUD E, IVANOVA A, GORDON C, et al. Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses[J]. Plant, Cell & Environment,2012,35(2):405−417.

    [40]

    ZHAO J, YI H L. Genome-wide transcriptome analysis of arabidopsis response to sulfur dioxide fumigation[J]. Molecular Genetics and Genomics,2014,289(5):989−999. doi: 10.1007/s00438-014-0870-0

    [41]

    TRIPATHI S K, SANE A P, NATH P, et al. Organ abscission in plants: Understanding the process through transgenic approaches[M]. Research Signpost, 2008: 155-180.

    [42]

    KUHN N, SERRANO A, ABELLO C, et al. Regulation of polar auxin transport in grapevine fruitlets (Vitis vinifera L.) and the proposed role of auxin homeostasis during fruit abscission[J]. BMC Plant Biology,2016,16(1):234. doi: 10.1186/s12870-016-0914-1

    [43]

    GULFISHAN M, J A, BHAT T A, et al. Chapter 16-plant senescence and organ abscission[M]. Senescence signalling and control in plants. New York; Academic Press. 2018: 255−272.

    [44]

    PATHARKAR O R, WALKER J C. Advances in abscission signaling[J]. Journal of Experimental Botany,2017,69(4):733−740.

    [45] 杨盛迪, 孟祥轩, 郭大龙, 等. SO2引起巨峰葡萄采后落粒的共表达网络和转录调控分析[J]. 中国农业科学,2022,55(11):2214−2226. [YANG S D, MENG X X, GUO D L, et al. Co-expression network and transcriptional regulation analysis of sulfur dioxide-induced postharvest abscission of kyoho grape[J]. Scientia Agricultura Sinica,2022,55(11):2214−2226.

    YANG S D, MENG X X, GUO D L, et al. Co-expression network and transcriptional regulation analysis of sulfur dioxide-induced postharvest abscission of kyoho grape[J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.

    [46] 葛毅强, 陈颖. SO2对葡萄采后呼吸强度及内源激素的影响[J]. 园艺学报,1997,24(2):17−21. [GE Y Q, CHEN Y. Effects of SO2 on respiration and endogenous hormones of postharvest grape[J]. Acta Horticulturae Sinica,1997,24(2):17−21.

    GE Y Q, CHEN Y. Effects of SO2 on respiration and endogenous hormones of postharvest grape[J]. Acta Horticulturae Sinica, 1997, 24(2): 17-21.

    [47]

    XIA Z, SUN K, WANG M, et al. Overexpression of a maize sulfite oxidase gene in tobacco enhances tolerance to sulfite stress via sulfite oxidation and cat-mediated H2O2 scavenging[J]. PLoS One,2012,7(5):e37383. doi: 10.1371/journal.pone.0037383

    [48] 李秋雨, 曾凯芳, 姚世响. 活性氧在果实成熟和衰老中的作用及调控机制[J]. 食品与发酵工业,2020,46:271−276. [LI Q Y, CENG K F, YAO S X. Effect of reactive oxygen species on fruit ripening and senescence and the relevant mechanism[J]. Food and Fermentation Industries,2020,46:271−276.

    LI Q Y, CENG K F, YAO S X. Effect of reactive oxygen species on fruit ripening and senescence and the relevant mechanism[J]. ] Food and Fermentation Industries, 2020, 46: 271-276.

    [49] 徐松华. 逆境条件下植物体内活性氧代谢研究进展[J]. 安徽农学通报,2021,27(21):29−32. [XU S H. Research advances of reactive oxygen species in plants under dnvironmental stress[J]. Anhui Agricultural Science Bulletin,2021,27(21):29−32.

    XU S H. Research advances of reactive oxygen species in plants under dnvironmental stress[J]. Anhui Agricultural Science Bulletin, 2021, 27(21): 29-32.

    [50]

    LI L H, YI H L. Effect of sulfur dioxide on ros production, gene expression and antioxidant enzyme activity in arabidopsis plants[J]. Plant Physiology and Biochemistry,2012,58:46−53. doi: 10.1016/j.plaphy.2012.06.009

    [51] 崔慧萍, 周薇, 郭长虹. 植物过氧化物酶体在活性氧信号网络中的作用[J]. 中国生物化学与分子生物学报,2017,33(3):220−226. [CUI H P, ZHOU W, GUO C H. The role of plant peroxisomes in ros signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology,2017,33(3):220−226.

    CUI H P, ZHOU W, GUO C H. The role of plant peroxisomes in ros signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(3): 220-226.

    [52]

    ZHANG Z, WU Z H, YUAN Y Y, et al. Sulfur dioxide mitigates oxidative damage by modulating hydrogen peroxide homeostasis in postharvest table grapes[J]. Postharvest Biology and Technology,2022,188:111877. doi: 10.1016/j.postharvbio.2022.111877

    [53] 孔秋莲, 胡文玉, 修德仁, 等. 葡萄贮藏中SO2伤害与活性氧代谢的关系[J]. 沈阳农业大学学报,2001,32(6):449−451. [KONG Q L, HU W Y, XIU D R, et al. Studies on relationship between SO2 injury and active oxygen metabolism in grape during storage[J]. Journal of Shenyang Agricultural University,2001,32(6):449−451.

    KONG Q L, HU W Y, XIU D R, et al. Studies on relationship between SO2 injury and active oxygen metabolism in grape during storage[J], Journal of Shenyang Agricultural University, 2001, 32(6): 449-451.

    [54]

    TIAN S P, QIN G Z, LI B Q. Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity[J]. Plant Molecular Biology,2013,82(6):593−602. doi: 10.1007/s11103-013-0035-2

    [55]

    FORLANI S, MASIERO S, MIZZOTTI C. Fruit ripening: The role of hormones, cell wall modifications, and their relationship with pathogens[J]. Journal of Experimental Botany,2019,70(11):2993−3006. doi: 10.1093/jxb/erz112

    [56]

    MAJDA M, ROBERT S. The role of auxin in cell wall expansion[J]. International Journal of Molecular Sciences,2018,19(4):951. doi: 10.3390/ijms19040951

图(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 网络出版日期:  2023-06-07
  • 刊出日期:  2023-08-14

目录

/

返回文章
返回