• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

山西部分地区树莓采后主要侵染性病原真菌的鉴定及其生物学特性

张晓宇, 高振峰, 侯亚茹, 张新宪, 陈园园, 张立新

张晓宇,高振峰,侯亚茹,等. 山西部分地区树莓采后主要侵染性病原真菌的鉴定及其生物学特性[J]. 食品工业科技,2023,44(13):110−118. doi: 10.13386/j.issn1002-0306.2022060099.
引用本文: 张晓宇,高振峰,侯亚茹,等. 山西部分地区树莓采后主要侵染性病原真菌的鉴定及其生物学特性[J]. 食品工业科技,2023,44(13):110−118. doi: 10.13386/j.issn1002-0306.2022060099.
ZHANG Xiaoyu, GAO Zhenfeng, HOU Yaru, et al. Identification and Biological Characteristics of Postharvest Pathogenic Fungi of Raspberries in Some Areas of Shanxi[J]. Science and Technology of Food Industry, 2023, 44(13): 110−118. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060099.
Citation: ZHANG Xiaoyu, GAO Zhenfeng, HOU Yaru, et al. Identification and Biological Characteristics of Postharvest Pathogenic Fungi of Raspberries in Some Areas of Shanxi[J]. Science and Technology of Food Industry, 2023, 44(13): 110−118. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060099.

山西部分地区树莓采后主要侵染性病原真菌的鉴定及其生物学特性

基金项目: 山西省自然科学基金(201901D111451);山西省重点研发计划(一般项目)(201703D221026-1)。
详细信息
    作者简介:

    张晓宇(1979−),女,博士,研究员,研究方向:农产品贮藏保鲜,E-mail:xiaoyuzhang2005@163.com

  • 中图分类号: G633.91

Identification and Biological Characteristics of Postharvest Pathogenic Fungi of Raspberries in Some Areas of Shanxi

  • 摘要: 树莓(Rubus corchorifolius L. f.)采后易受病原菌侵染,病菌种类不但与果实种类有关,而且与栽培环境相关。本研究对山西省太原市、阳泉市和长治市3个不同产区的树莓采后主要侵染性病原真菌进行分离鉴定并研究其生物学特性,对病原菌进行分离纯化,结合形态学和分子生物学特征确定其种类,明确在同期内病原菌产孢量和在不同条件下病原菌生长情况。 结果表明,所研究3个地区侵染采后树莓病原菌主要为拟康宁木霉(Trichoderma koningiopsis)、皮落青霉(Penicillium crustosum)、葡萄孢霉(Botrytis sp.)和少根根霉(Rhizopus arrhizus)。皮落青霉(Penicillium crustosum)的产孢能力最强,其次是葡萄孢霉(Botrytis sp.)和少根根霉(Rhizopus arrhizus);4种致病菌最适生长pH为7,以皮落青霉(Penicillium crustosum)生长最快;0、4和10 ℃贮藏期间以葡萄孢霉(Botrytis sp.)和皮落青霉(Penicillium crustosum)生长较快,拟康宁木霉(Trichoderma koningiopsis)和少根根霉(Rhizopus arrhizus)在0、4 ℃条件下生长较慢。
    Abstract: Raspberry (Rubus corchorifolius L. f.) is easy to be infected by pathogens after harvesting. The species of pathogens are not only related to the fruit species, but also related to the cultivation environment. In this study, the main pathogens of post-harvest raspberry were isolated and identified from three different producing areas of raspberry in Taiyuan, Yangquan and Changzhi of Shanxi Province and their biological characteristics were studied. The pathogens were isolated and purified to determine their species by combining morphological and molecular biological characteristics, so as to determine the spore production of pathogens in the same period and their growth under different conditions. The results indicated that Trichoderma koningiopsis, Penicillium crustosum, Botrytis sp. and Rhizopus arrhizus were the main pathogens infecting post-harvest raspberry in the three regions. Penicillium crustosum had the highest spore production capacity, followed by Botrytis sp. and Rhizopus arrhizus. The optimum pH for the growth of four pathogens was 7, with Penicillium crustosum growing the fastest. Botrytis sp. and Penicillium crustosum presented faster growing during storage at 0, 4 and 10 ℃, while Trichoderma koningiopsis and Rhizopus arrhizus grew slower at 0 and 4 ℃.
  • 树莓(Rubus corchorifolius L. f.)属蔷薇科悬钩子属,又称覆盆子、托盘和马林等。树莓果实柔软多汁、香味独特、营养和药用价值突出[1-3]。其叶片和种子中也含有丰富的酚类和油类抗氧化物,在抗氧化、抗癌和防癌方面作用突出,有“第三代水果”之称,深受消费者喜爱[4-5]。但树莓果实果皮极薄,易受机械损伤,并且采后呼吸强度高,软化现象严重,加之采收期多雨高温,果实极易腐败,常温下1~2 d便失去商品价值[6]。因此,控制树莓采后病害发生,对扩大树莓鲜食市场供应和促进树莓产业发展具有重要意义。

    树莓采后侵染性致病真菌的多样性以及地域差异性,给树莓采后病害防治带来极大困难。目前认为引起树莓的主要病害包括灰霉病、茎腐病和灰斑病等[7]。如从辽宁树莓上共鉴定出6种采后侵染性真菌:灰葡萄孢(Botrytis cinerea)、蔷薇色尾孢霉(Cercospora rosicola)、胶孢炭疽菌(Colletotrichum gloeosporioides)、一种壳针孢属真菌 (Septoria sp.)、少隔多胞锈菌(Phragmidium pauciloculare)和茄丝核菌(Rhizoctonia solani[8]。也有研究发现,树莓采后致病真菌以灰葡萄孢菌(Botrytis cinerea)为主[9],亦有研究发现,胶孢炭疽菌(Colletotrichum gloeosporioides)和桃吉尔霉(Gilbertella persicaria)是树莓采后真菌性病害的主要病原真菌[10-11]。病害种类不仅与植物品种有关,而且同各地栽培环境也密切相关[12]。随着乡村振兴工作的不断深入,山西树莓产业发展势头强劲,但关于山西树莓采后病原真菌鉴定及生物学特性研究少有报道。本研究对山西省部分树莓种植区采后侵染性病原真菌进行分离纯化,对分离所得的病原真菌进行鉴定,研究其同期内病原菌产孢量和在不同条件下病原菌生长情况,揭示病原真菌生物学特性,为有效防治树莓采后真菌性病害,延长树莓贮藏期提供理论依据。

    树莓于2020年7月分别采自山西阳泉市、长治市屯留县和太原市尖草坪区树莓种植区,采收当日低温下运回山西农业大学(山西省农业科学院)农产品贮藏保鲜研究所。葡萄糖分析纯、琼脂粉 天津市凯通化学试剂有限公司;引物1、引物4 华大基因;马铃薯葡萄糖琼脂培养基(PDA):葡萄糖20 g,马铃薯200 g,琼脂粉18 g,蒸馏水1000 mL;马铃薯葡萄糖液体培养基(PDB):PDA不加琼脂。

    DHP-9272 培养箱 天津市通利信达仪器厂;LifeECO PCR仪 杭州博日科技有限公司; BX53 显微镜 OLYMPUS;WFH- 202 紫外透射分析仪 上海精科实业有限公司。

    取自然发病果实的病害边缘与表面未感染处的接触面的小块组织(约 5 mm×5 mm),经75%酒精表面消毒后,无菌水清洗3次,取出后用滤纸吸干组织块,接入 PDA 平板中, 28 ℃下培养[13]。当培养出的菌落直径生长至1 cm时,挑起菌落边缘的菌丝接种至PDA培养基中,28 ℃恒温培养,重复上述操作2~3次即可得到纯化的病原菌,置于4 ℃下保存。

    参考柯赫氏法则[14],取健康且大小一致的树莓,经75%酒精消毒、晾干,在果实表面用无菌接种针穿刺果实,形成伤口。在伤口处接种纯化的病原菌悬浮液(1×104 CFU/mL)2 μL并晾干;放入培养皿,室温下观察发病情况。以接种无菌水为对照,重复5次。观察是否与自然发病的病原菌特征相一致。

    将分离到的病原菌株转接在PDA平板上,在28 ℃、80%下培养,观察并记录菌落的颜色、形状、表面特征、生长速度、边缘生长状况等[15]。并在显微镜下观察孢子的类型、着生方式、大小、分生孢子梗的特征等。

    病原菌于PDA平板上28 ℃培养5~7 d,随后挑取菌丝体在50 mL PDB三角瓶中室温下扩大培养4~5 d,液氮冷冻后研磨成细粉,用 CTAB 法[16-17]提取纯化基因组 DNA。用nrDNA-ITS通用引物ITS1(5′-TCCGTAGGTGAACCTGCGG-3′)和ITS4(5′-TCCTCCGCTTA TTGATATGC-3′),进行PCR扩增。采用18 μL反应体系:10×buffer 5 μL,25 mmol/L MgCl2 5 μL,10 mmol/L dNTP 0.5 μL,5 U Taq酶0.5 μL,模板DNA 2 μL,ITS1和ITS4引物各2.5 μL。扩增完成后,取5 μL扩增产物电泳检测,用琼脂糖凝胶回收试剂盒(Gel Extraction Mini Kit W5221)回收纯化目的片段,回收纯化产物送Invitrogen公司测序。将得到的序列与GenBank数据库中的核酸数据进行BLAST比对,从而确定病原菌的分类[18]

    病原菌产孢能力的测定参照刘行凤等[19]的方法,将病原菌放置在PDA平板,28 ℃培养7 d后,用无菌水洗涤平板表面获得孢子悬浮液,并用血球计数板对孢子数量进行计算,重复5次。

    病原菌最适pH测定参照郭成等[20]的方法,并略作改动。不同病原菌分别于pH3、4、5、6、7、8和9的PDB培养液进行发酵培养,7 d后终止发酵,以生物量(干重)及孢子量为指标来确定pH对病原菌生长的影响,孢子量的测定方法同1.4.1,重复5次。

    生物量(干重)的测定:取病原菌发酵液于干燥的离心管中,3200 r/min离心35 min。离心结束后,将上清液移出,放入65 ℃干燥箱中干燥至恒重,称量其质量。计算公式如下:W=W1−W2。W为病原菌干重,g;W1为病原菌和离心管总重,g;W2为离心管重,g。

    病原菌最适生长温度测定参照李丹丹[21]的方法,并略作改动。在PDA平板培养基中接入5 mm大小及菌龄相同的病原菌菌块,分别置于0、4和10 ℃下培养,采用十字交叉法测量菌落直径,并记录生长时间,若无法测量直径,用“+”表示,重复5次。

    参照王友升等[22]的方法将树莓按颜色分为绿果、白果、转红果、半红果、全红果、完熟果,准确称取不同成熟度果实榨汁后,经0.22 μm微孔滤膜过滤后的无菌树莓汁液为营养成分,放入PDA培养基中,25 ℃恒温培养,采用十字交叉法测量菌落直径,观察不同成熟度树莓汁液对病原生长的影响,若无法测量直径,用“+”表示,重复5次。

    利用 Excel 2007 和 SPSS 23.0 软件对试验数据进行统计分析和 Origin2021软件作图 ,并应用 Duncan 氏新复极差法进行差异显著性检验。

    从树莓病果的病健交界处组织中共分离纯化出8种不同形态真菌和6种不同形态细菌(图1图2)。分别命名为FSM-1~FSM-8和SM-1~SM-6。其中,在3个采集地均可分离纯化到FSM-1、FSM-3、FSM-7和FSM-8 4种真菌;阳泉地区树莓还分离到菌株FSM-5、FSM-6、SM-4和SM-6;屯留地区树莓还分离到菌株FSM-2、SM-2、SM-3和SM-5;太原地区树莓还分离到菌株FSM-4和SM-1(表1)。病原菌在PDA平板上,FSM-1菌丝呈疏松状,无基内菌丝,颜色乳白色,后期可产生绿色孢子;FSM-3生长初期菌落周围有白色较短绒毛,后期产生军绿色色素和大量孢子;FSM-2、FSM-4和FSM-5菌落形态较为相似, 菌落生长迅速,颜色呈白色,中央菌落向外扩展;FSM-6菌丝细密,颜色前期为白色,后期边缘及中央有棕色,生长后期会产生气生菌丝;FSM-7初期菌丝呈疏松状,白色,有基内菌丝,且中心菌丝浓密,随后菌丝颜色转为土灰色,生长后期颜色进一步加深,产生大量孢子,培养至15 d后产生黑色菌核;FSM-8生长初期有明显基内菌丝,灰白色,生长后期产生气生菌丝,菌丝颜色变为深灰色,且菌丝末端产生大量黑色孢子。SM-1菌落呈黄色,有粘性,水渍状,表面光滑;SM-2菌落呈浅黄色,粉粒状,表面粗糙,易挑起;SM3-6菌落较为整齐,菌落颜色呈乳白色,有粘稠感,湿润,稍浑浊,切面隆起。

    图  1  树莓采后病原真菌菌落形态
    Figure  1.  Colony morphology of raspberry pathogenic fungi
    图  2  树莓采后病原细菌菌落形态
    Figure  2.  Colony morphology of raspberry pathogenic bacteria
    表  1  山西部分地区分离的树莓采后病原真菌
    Table  1.  Raspberry pathogens isolated from certain areas in Shanxi Province
    地区种类
    太原FSM-1、FSM-3、FSM-4、FSM-7、FSM-8、SM-1
    阳泉FSM-1、FSM-3、FSM-5、FSM-6、FSM-7、FSM-8、SM-4、SM-6
    长治FSM-1、FSM-2、FSM-3、FSM-7、FSM-8、SM-2、SM-3、SM-5
    下载: 导出CSV 
    | 显示表格

    培养72 h后FSM-1、FSM-3、FSM-7和FSM-8真菌纯培养物表现出明显致病特性(图3),而其余真菌培养物无明显症状出现;所有的细菌纯培养物无明显症状出现。其中,FSM-1的发病症状:病斑颜色呈黑绿色,伤口中央有菌丝附着,随着伤口处不断扩散。FSM-3伤口处附着许多灰绿色孢子,和纯化后病原菌形态相似;FSM-7病斑呈灰色,菌丝附着在病斑处,软腐,略凹陷;FSM-8病斑呈灰褐色,伤口处有少量菌丝附着,略凹陷,轻微软腐。

    图  3  病原真菌FSM-1~8和SM-1~6的回接发病症状
    Figure  3.  Symptoms of raspberry after inoculation of pathogenic fungi FSM-1~8 and SM-1~6

    病原菌在PDB发酵培养基上,FSM-1呈米黄色絮状,FSM-3呈白色球状,FSM-7呈黑色球状,FSM-8呈土黄色絮状(图4)。

    图  4  4株树莓采后致病真菌PDB培养液发酵培养特征
    Figure  4.  Liquid culture characteristics of four postharvest pathogenic fungi of raspberry in PDB

    参考对树莓病原菌的相关描述[23],将4株病原菌进行比对分析后,菌株FSM-1、FSM-3、FSM-7和FSM-8分别鉴定为木霉属、青霉属、葡萄孢属和根霉属。

    在扫描电镜下观察,FSM-3具有青霉菌属典型表型,即菌丝末端呈扫帚状,有分枝,每个分枝上均有数量不等的扁圆形分生孢子。其形态特征与拟青霉属、扩展青霉、指状青霉以及皮落青霉等特征较为接近;FSM-8具有根霉属典型表型,即菌丝细长,不分隔,菌丝粗细均匀,顶端膨大形成圆形孢子囊,有大量附着胞,同根霉属、匍枝根霉、少根根霉和米根霉等特征较为相近;FSM-7菌丝无隔膜,粗细均匀,菌丝顶端有小突起,且分生孢子生于突起上,通过对比发现同葡萄孢属表型特征较为相近;FSM-1菌丝无隔膜,菌丝细长,粗细均匀,菌丝表面有明显附着胞,同木霉属、哈茨木霉、拟康宁木霉和多西木霉等形态特征较为相近(图5)。

    图  5  树莓采后病原真菌形态(5000×)
    Figure  5.  The morphology of raspberry postharvest pathogenic fungi(5000×)

    利用ITS序列构建NJ系统发育树后发现,菌株FSM-1同Trichoderma koningiopsis聚在同一支(图6a);菌株FSM-3同Penicillium crustosum聚在同一支(图6b);菌株FSM-7同Botrytis sp.聚在同一支(图6c);菌株FSM-8同Rhizopus arrhizus聚在同一支(图6d)。因此,结合形态学、扫描电镜结果以及ITS序列分析结果可将菌株FSM-1、FSM-3、FSM-7和FSM-8分别鉴定为拟康宁木霉(Trichoderma koningiopsis)、皮落青霉(Penicillium crustosum)、葡萄孢霉(Botrytis sp.)和少根根霉(Rhizopus arrhizus)。

    图  6  4株真菌基于ITS序列的系统发育分析
    Figure  6.  Phylogenetic analysis of four fungal strains based on ITS sequence

    图7所示,相同时间内4种病原微生物产孢能力差异明显,其中以Penicillium crustosum产孢能力最强,其次为Botrytis sp.和Rhizopus arrhizus,菌株Trichoderma koningiopsis产孢能力最弱。

    图  7  4株真菌产孢能力比较
    注:不同小写字母表示差异显著(P<0.05)。
    Figure  7.  Spore-producing capacity of 4 fungal strains

    图8所示,pH对4种病原生长具有一定影响。随着pH增大,4种病原的产孢量和生物量均呈现先升高后下降趋势,表现出耐酸不耐碱现象。4种病原中以菌株Penicillium crustosum的产孢量和生物量最大,其次为菌株Trichoderma koningiopsisRhizopus arrhizus;菌株Botrytis sp.在pH低于4时其生长明显受到抑制。

    图  8  不同pH对4株病原菌产孢量和生物量的影响
    Figure  8.  Effects of different pH values on spore production and biomass of 4 pathogens

    表2可知,在0、4和10 ℃条件下菌株Penicillium crustosumBotrytis sp.生长速率快于其它菌株;4株菌株中以Trichoderma koningiopsisRhizopus arrhizus在0、4 ℃条件下生长较慢。

    表  2  不同温度对病原菌生长速率的影响
    Table  2.  Effects of different temperature on growth rate of pathogens
    菌株0 ℃ 菌落直径(mm)(45 d)4 ℃ 菌落直径(mm)(20 d)10 ℃菌落直径(mm)(7 d)
    FSM-15.0±0.05.0±0.082.6±1.1
    FSM-3++++++++
    FSM-738.8±2.981.4±2.383.0±1.6
    FSM-814.0±1.610.4±1.781.4±1.1
    注:FSM-3菌落呈不规则形态,无法测量直径,用“+”表示;“++”表示该菌株可正常生长,但不产孢;“+++”表示该菌株既可正常生长,又可产孢。
    下载: 导出CSV 
    | 显示表格

    4种病原菌中仅菌株Botrytis sp.生长同树莓成熟度关系较为密切,表现出低成熟度抑制,高成熟度促进的作用;菌株Trichoderma koningiopsis仅在以绿果汁液为营养物质时生长较差;菌株Rhizopus arrhizus仅在以全红果为营养物质时生长较差,菌株Rhizopus arrhizus产生这种现象的原因可能与全红时期树莓中的代谢物变异大,存在一些不利于其生长的代谢物质有关[24];菌株Penicillium crustosum生长则不受树莓成熟度影响(表3图9)。

    表  3  不同成熟树莓汁液对病原菌生长的影响
    Table  3.  Effect of different mature raspberry juice on the growth of pathogens
    菌落直径(mm)
    绿果白果转红果半红果全红果完熟果
    FSM-159.6±2.184.6±1.185.4±0.585.2±0.884.8±1.185.0±1.0
    FSM-3++++++++++++++++++
    FSM-75.0±0.013.4±1.58.8±0.820.6±1.140.8±1.549.0±4.4
    FSM-884.6±1.184.2±0.884.6±0.984.8±0.464.2±3.485.2±0.8
    注:FSM-3菌落呈不规则形态,无法测量直径,用“+”表示;“+++”表示该菌株既可正常生长,又可产孢。
    下载: 导出CSV 
    | 显示表格
    图  9  不同成熟度树莓汁液对病原菌生长的影响
    Figure  9.  Effect of different mature raspberry juice on growth of pathogens

    从山西省太原市、阳泉市和长治市地区的树莓病果中共分离出四种病原菌,分别是拟康宁木霉(Trichoderma koningiopsis)、皮落青霉(Penicillium crustosum)、葡萄孢霉(Botrytis sp.)和少根根霉(Rhizopus arrhizus)。其中,Penicillium crustosum会引起柑橘、木瓜等多种水果腐烂;Botrytis sp.会引起葡萄黑斑病;Rhizopus arrhizus会引起烤烟霉变;Trichoderma koningiopsis可致腐也可用作拮抗菌[25-29]。树莓贮藏期间病害一般是多种病原菌侵染的结果。陈哲等[30]从贵阳市树莓贮藏病果中分离出2属10种病原菌。其中,引起采后腐烂的主要病原菌鉴定为极细链格孢菌(Alternaria tenuissima XCL17-1)和木贼镰刀菌(Fusarium equiseti dx-7)2种。傅俊范等[31]在对辽宁树莓灰霉病的发生危害及病原鉴定的研究中发现,树莓灰霉病是由灰葡萄孢真菌侵染所致的。孟婷婷[32]从树莓病果及植株上分离到4种新的病原菌,分属于Pestlotiopsis adusta、Neopesta lotiopsis megna、Alternaria sp.和A. tenussima。而本文分离出四株病原真菌为Trichoderma koningiopsis、Penicillium crustosum、Botrytis sp.和Rhizopus arrhizus,这说明侵袭采后树莓的病原真菌具有多样性,且存在地域差异性。

    病原菌在不同的环境下(温度、pH),其生长速度不同[33]。本研究表明4种致病菌产孢子能力差别较为明显,Penicillium crustosum的产孢能力较强,Trichoderma koningiopsis产孢能力较弱。菌株中以Trichoderma koningiopsisRhizopus arrhizus低温生长最慢,说明Trichoderma koningiopsisRhizopus arrhizus不耐低温,Penicillium crustosumBotrytis sp.生长速度较快,说明Penicillium crustosumBotrytis sp.耐低温。这与尚晓静等[34]对树莓极细链格孢菌叶斑病病原菌鉴定及其生物学特性研究结果一致。虽然各致病菌在不同pH条件下都能生长,但是在pH为7的条件下产孢能力和生物量较大。树莓在达到完熟前期pH明显偏低, pH为3.5左右,依据pH结果推断Trichoderma koningiopsisPenicillium crustosumRhizopus arrhizus可能为树莓采后主要致病菌。

    通过对山西省太原市、阳泉市和长治市的树莓采后病果进行分离鉴定,得到病原菌种类有拟康宁木霉(Trichoderma koningiopsis)、皮落青霉(Penicillium crustosum)、葡萄孢霉(Botrytis sp.)和少根根霉(Rhizopus arrhizus)。其中,0 ℃下以葡萄孢霉为主要致病菌,4种致病菌适宜生长于中性偏酸性环境中。其中,Penicillium crustosum的产孢能力最强,Penicillium crustosumBotrytis sp.适宜在低温下生长。Trichoderma koningiopsisPenicillium crustosumRhizopus arrhizus可能为树莓采后主要致病菌。

  • 图  1   树莓采后病原真菌菌落形态

    Figure  1.   Colony morphology of raspberry pathogenic fungi

    图  2   树莓采后病原细菌菌落形态

    Figure  2.   Colony morphology of raspberry pathogenic bacteria

    图  3   病原真菌FSM-1~8和SM-1~6的回接发病症状

    Figure  3.   Symptoms of raspberry after inoculation of pathogenic fungi FSM-1~8 and SM-1~6

    图  4   4株树莓采后致病真菌PDB培养液发酵培养特征

    Figure  4.   Liquid culture characteristics of four postharvest pathogenic fungi of raspberry in PDB

    图  5   树莓采后病原真菌形态(5000×)

    Figure  5.   The morphology of raspberry postharvest pathogenic fungi(5000×)

    图  6   4株真菌基于ITS序列的系统发育分析

    Figure  6.   Phylogenetic analysis of four fungal strains based on ITS sequence

    图  7   4株真菌产孢能力比较

    注:不同小写字母表示差异显著(P<0.05)。

    Figure  7.   Spore-producing capacity of 4 fungal strains

    图  8   不同pH对4株病原菌产孢量和生物量的影响

    Figure  8.   Effects of different pH values on spore production and biomass of 4 pathogens

    图  9   不同成熟度树莓汁液对病原菌生长的影响

    Figure  9.   Effect of different mature raspberry juice on growth of pathogens

    表  1   山西部分地区分离的树莓采后病原真菌

    Table  1   Raspberry pathogens isolated from certain areas in Shanxi Province

    地区种类
    太原FSM-1、FSM-3、FSM-4、FSM-7、FSM-8、SM-1
    阳泉FSM-1、FSM-3、FSM-5、FSM-6、FSM-7、FSM-8、SM-4、SM-6
    长治FSM-1、FSM-2、FSM-3、FSM-7、FSM-8、SM-2、SM-3、SM-5
    下载: 导出CSV

    表  2   不同温度对病原菌生长速率的影响

    Table  2   Effects of different temperature on growth rate of pathogens

    菌株0 ℃ 菌落直径(mm)(45 d)4 ℃ 菌落直径(mm)(20 d)10 ℃菌落直径(mm)(7 d)
    FSM-15.0±0.05.0±0.082.6±1.1
    FSM-3++++++++
    FSM-738.8±2.981.4±2.383.0±1.6
    FSM-814.0±1.610.4±1.781.4±1.1
    注:FSM-3菌落呈不规则形态,无法测量直径,用“+”表示;“++”表示该菌株可正常生长,但不产孢;“+++”表示该菌株既可正常生长,又可产孢。
    下载: 导出CSV

    表  3   不同成熟树莓汁液对病原菌生长的影响

    Table  3   Effect of different mature raspberry juice on the growth of pathogens

    菌落直径(mm)
    绿果白果转红果半红果全红果完熟果
    FSM-159.6±2.184.6±1.185.4±0.585.2±0.884.8±1.185.0±1.0
    FSM-3++++++++++++++++++
    FSM-75.0±0.013.4±1.58.8±0.820.6±1.140.8±1.549.0±4.4
    FSM-884.6±1.184.2±0.884.6±0.984.8±0.464.2±3.485.2±0.8
    注:FSM-3菌落呈不规则形态,无法测量直径,用“+”表示;“+++”表示该菌株既可正常生长,又可产孢。
    下载: 导出CSV
  • [1]

    ZHANG X, SANDHU A, EDIRISINGHE I, et al. An exploratory study of red raspberry (Rubus idaeus L.) (poly) phenols/metabolites in human biological samples[J]. Food & Function,2018,9(2):806−818.

    [2]

    MORIMOTO C, SATOH Y, HARA M, et al. Anti-obese action of raspberry ketone[J]. Life Sciences,2005,77(2):194−204. doi: 10.1016/j.lfs.2004.12.029

    [3]

    BURICOVA L, ANDJELKOVIC M, CERMAKOVA A, et al. Antioxidant capacities and antioxidants of strawberry, blackberry and raspberry leaves[J]. Czech Journal of Food Sciences,2011,29(2):181−189. doi: 10.17221/300/2010-CJFS

    [4] 张元梅, 张群英. 树莓酚类物质及其生物活性研究进展[J]. 南方农业,2020,14(4):28−31. [ZHANG Y M, ZHANG Q Y. Research progress of raspberry phenolics and their biological activity[J]. South China Agriculture,2020,14(4):28−31. doi: 10.19415/j.cnki.1673-890x.2020.4.008

    ZHANG Y M, ZHANG Q Y. Research progress of raspberry phenolics and their biological activity [J]. South China Agriculture, 2020, 14(04): 28-31. doi: 10.19415/j.cnki.1673-890x.2020.4.008

    [5]

    CAMPBELL T F, MCKENZIE J, MURRAY J A, et al. Rubus rosifolius varieties as antioxid ant and potential chemopreventive agents[J]. Journal of Functional Foods,2017,37:49−57. doi: 10.1016/j.jff.2017.07.040

    [6] 张帆, 王友升, 刘晓艳, 等. 采前水杨酸处理对树莓果实贮藏效果及抗氧化能力的影响[J]. 食品科学,2010,31(10):308−312. [ZHANG F, WANG Y S, LIU X Y, et al. Effect of pre-harvest salicylic acid spray treatment on fruit quality and antioxidant capacity of raspberry during post-harvest storage[J]. Food Science,2010,31(10):308−312.

    ZHANG F, WANG Y S, LIU X Y, et al. Effect of pre-harvest salicylic acid spray treatment on fruit quality and antioxidant capacity of raspberry during post-harvest storage[J]. Food Science, 2010, 31(10): 308-312.

    [7] 朱鸣明. 阜新地区树莓病害的发生与防治[J]. 园艺与种苗,2020,40(6):15−16, 51. [ZHU M M. Occurrence and control of raspberry diseases in Fuxin area[J]. Horticulture and Seed,2020,40(6):15−16, 51.

    ZHU M M. Occurrence and control of raspberry diseases in Fuxin area[J]. Horticulture and Seed, 2020, 4 0(6): 15-16, 51.

    [8] 傅超. 辽宁树莓有害生物鉴定及防治基础研究[D]. 沈阳: 沈阳农业大学, 2010

    FU C. Raspberry pest identification and the disease control in Liaoning Province[D]. Shenyang: Journal of Shenyang Agricultural University, 2010.

    [9]

    SADLO S, PIECHOWICZ B, PODBIELSKA M. A study on residue levels of fungicides and insecticides applied according to the program of raspberry protection[J]. Environmental Science and Pollution Research, 2018: 1–12.

    [10]

    CARISSE O, MCNEALIS V, KRISS A. Association between weather variables, airborne inoculum concentration, and raspberry fruit rot caused by Botrytis cinerea[J]. Phytopathology,2018,108:70−82. doi: 10.1094/PHYTO-09-16-0350-R

    [11] 王友升, 张燕, 何欣萌, 等. 树莓果实采后病原真菌的rDNA ITS序列及碳源代谢指纹图谱分析[J]. 中国食品学报,2015,15(8):224−230. [WANG Y S, ZHANG Y, HE Y M, et al. Analysis of rDNA ITS sequence and carbon source metabolism fingerprint of a pathogenic fungus from raspberry fruit[J]. Journal of Chinese Institute of Food Science and Technology,2015,15(8):224−230.

    WANG Y S, ZHANG Y, HE Y M, et al. Analysis of rDNA ITS sequence and carbon source metabolism fingerprint of a pathogenic fungus from raspberry fruit[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15 (8): 224-230.

    [12] 高鹏, 魏江铭, 李瑶, 等. 山西省大同市早播饲用燕麦叶部真菌病害病原鉴定及影响因素分析[J]. 草业学报,2021,30(6):82−93. [GAO P, WEI J M, LI Y, et al. Identification of fungal diseases and factors influencing disease index in oat (Avena sativa) crops in the Datong region of Shanxi Province[J]. Acta Prataculturae Sinica,2021,30(6):82−93. doi: 10.11686/cyxb2020534

    GAO P, WEI J M, LI Y, et al. Identification of fungal diseases and factors influencing disease index in oat (Avena sativa) crops in the Datong region of Shanxi Province[J]. Acta Prataculturae Sinica, 2021, 30(6): 82-93. doi: 10.11686/cyxb2020534

    [13] 高芬, 褚建梅, 李静虹, 等. 山西省‘赞皇大枣’黑腐病病原菌的分离鉴定及生物学特性研究[J]. 果树学报,2015,32(2):274−280, 352. [GAO F, ZHU J M, LI J H, et al. Isolation, identification and biological characteristics of the pathogen causing black rot disease in ‘Zanhuangdazao’ jujube of Shanxi Province[J]. Journal of Fruit Science,2015,32(2):274−280, 352. doi: 10.13925/j.cnki.gsxb.20140351

    GAO F, ZHU J M, LI J H, et al. Isolation, identification and biological characteristics of the pathogen causing black rot disease in ‘Zanhuangdazao’ jujube of Shanxi Province[J]. Journal of Fruit Science, 2015, 32(2): 274-280, 352. doi: 10.13925/j.cnki.gsxb.20140351

    [14] 马淑雅, 徐克东, 吴建新, 等. 野生红果枸杞白粉病菌的鉴定[J]. 贵州农业科学,2017,45(6):79−83. [MA S Y, XU K D, WU J X, et al. Powdery mildew authentication of Lycium chinense[J]. Guizhou Agricultural Sciences,2017,45(6):79−83. doi: 10.3969/j.issn.1001-3601.2017.06.019

    MA S Y, XU K D, WU J X, et al. Powdery mildew authentication of Lycium chinense[J]. Guizhou Agricultural Sciences, 2017, 45(6): 79-83. doi: 10.3969/j.issn.1001-3601.2017.06.019

    [15] 赵晓军, 周建波, 殷辉, 等. 胡萝卜黑腐病病原菌鉴定及生物学特性研究[J]. 植物保护,2015,41(6):79−82. [ZHAO X J, ZHOU J B, YIN H, et al. Pathogen identification and biological characteristics of carrot black rot[J]. Plant Protection,2015,41(6):79−82. doi: 10.3969/j.issn.0529-1542.2015.06.013

    ZHAO X J, ZHOU J B, YIN H, et al. Pathogen identification and biological characteristics of carrot black rot[J]. Plant Protection, 2015, 41(6): 79-82. doi: 10.3969/j.issn.0529-1542.2015.06.013

    [16] 李焕宇, 付婷婷, 张云, 等. 5 种方法提取真菌基因组DNA 作 为 PCR 模 板 效 果 的 比 较[J]. 中 国 农 学 通 报,2017,33(16):28−35. [LI H Y, FU T T, ZHANG Y, et al. Effect comparison of five methods to extract fungal genomic DNA as PCR templates[J]. Chinese Agricultural Science Bulletin,2017,33(16):28−35.

    LI H Y, FU T T, ZHANG Y, et al. Effect comparison of five methods to extract fungal genomic DNA as PCR templates[J]. Chinese Agricultural Science Bulletin, 2017, 33(16): 28-35.

    [17] 张建航. 花生茎腐病病原菌鉴定与生物学特性及AP2/ERF的生物信息学分析[D]. 郑州: 河南农业大学, 2018

    ZHANG J H. Pathogen identification and biological characteristics of peanut collar rot, bioinformatics analysis of AP2/ERF[D]. Zhengzhou: Henan Agricultural University, 2018.

    [18]

    RASOOLI I, ABYANEH M R. Inhibitory effects of thyme oils on growth and aflatoxin production by Aspergillus parasiticus[J]. Food Control,2004,6(15):479−483.

    [19] 刘行风, 刘东, 陶磊, 等. 黑龙江省黄瓜链格孢叶斑病病原鉴定及生物学特性研究[J]. 中国蔬菜,2021(8):80−86. [LIU X F, LIU D, TAO L, et al. Pathogen identification and biological characteristics of cucumber Alternaria leaf spot of in Heilongjiang Province[J]. Chinese Vegetables,2021(8):80−86. doi: 10.19928/j.cnki.1000-6346.2021.1034

    LIU X F, LIU D, TAO L, et al. Pathogen identification and biological characteristics of cucumber Alternaria leaf spot of in Heilongjiang Province[J]. Chinese Veget ables, 2021 (8): 80-86. doi: 10.19928/j.cnki.1000-6346.2021.1034

    [20] 郭成, 张小, 张有富, 等. 短密木霉菌株GAS1-1的分离鉴定、拮抗作用及其生物学特性[J]. 植物保护学报,2019,46(2):305−312. [GUO C, ZHANG X J, ZHANG Y F, et al. Isolation, identification, antagonistic effect and biological characteristics of Trichoderma brevicompactum strain GAS 1-1[J]. Journal of Plant Protection,2019,46(2):305−312.

    GUO C, ZHANG X J, ZHANG Y F, et al. Isolation, identification, antagonistic effect and biological characteristics of Trichoderma brevicompactum strain GAS 1-1[J]. Journal of Plant Protection, 2019, 46(2): 305-312.

    [21] 李丹丹. 无花果炭疽病病原鉴定及生物学特性研究与有效药剂筛选[D]. 合肥: 安徽农业大学, 2019

    LI D D. Identification and biological characteristics of the pathogen from fig anthracnosc and screening of effective fungicides[D]. Hefei: Anhui Agricultural University , 2019.

    [22] 王友升, 谷祖臣, 张帆. 不同品种和成熟度树莓和黑莓果实的氧化和抗氧化活性比较[J]. 食品科学,2012,33(9):81−86. [WANG Y S, GU Z C, ZHANG F. Multivariate analysis of pro- and anti-oxidant properties of raspberry and blackberry from different varieties at different maturity stages[J]. Food Science,2012,33(9):81−86.

    WANG Y S, GU Z C, ZHANG F. Multivariate analysis of pro- and anti-oxidant properties of raspberry and blackberry from different varieties at different maturity stages[J]. Food Science, 2012, 33(9): 81-86

    [23] 宗兆锋, 康振生. 植物病理学原理[M]. 北京: 中国农业出版社, 2002

    SONG Z F, KANG Z S. Phytopathology[M]. Beijing: China Agriculture Press, 2002.

    [24] 白滨, 文朝慧, 何苏琴, 等. 引起向日葵盘腐和瘦果花皮的根霉种类及其生物学特性[J]. 植物病理学报,2021,51(6):828−839. [BAI B, WEN Z H, HE S Q, et al. Identification and biological characteristics of Rhizopus spp. causing head rot and seedcase discolor of confection ery sunflower[J]. Acta Phytopathologica Sinica,2021,51(6):828−839. doi: 10.13926/j.cnki.apps.000587

    BAI B, WEN Z H, HE S Q, et al. Identification and biological characteristics of Rhizopus spp. causing head rot and seedcase discolor of confection ery sunflower[J]. Acta Phytopathologica Sinica, 2021, 51(6): 828-839. doi: 10.13926/j.cnki.apps.000587

    [25] 宋波, 张廷富, 杨昌鑫, 等. 贝莱斯芽孢杆菌对柑橘病原菌皮落青霉的生防初探[J]. 西南农业学报,2022,35(11):2609−2615. [SONG B, ZHANG T F, YANG C X, et al. Preliminary study on biocontrol of Bacillus velescens against Penicillium crustosum in citrus[J]. Southwest China Journal of Agricultural Sciences,2022,35(11):2609−2615. doi: 10.16213/j.cnki.scjas.2022.11.019

    SONG B, ZHANG T F, YANG C X, et al. Preliminary study on biocontrol of Bacillus velescens against Penicillium crustosum in citrus[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(11): 2609-2615. doi: 10.16213/j.cnki.scjas.2022.11.019

    [26] 黄荣. 皱皮木瓜腐败微生物的分离鉴定及控制[D]. 泰安: 山东农业大学, 2020

    HUANG R. Isolation, identification and control of spoilage microorganisms from Chaenomeles Speciosa (sweet) Nakai[D]. Taian: Shandong Agricultural University, 2020.

    [27] 朱志强, 集贤, 兰青阔, 等. 鲜食葡萄贮运期黑斑病害致病病原菌分离鉴定[J]. 包装工程,2020,41(21):31−37. [ZHU Z Q, JI X, LAN Q K, et al. Isolation and identification of pathogens causing grape blackspot during storage and transportation[J]. Packaging Engineering,2020,41(21):31−37.

    ZHU Z Q, JI X, LAN Q K, et al. Isolation and identification of pathogens causing grape blackspot during storage and transportation[J]. Packaging Engineering, 2020, 4 1(21): 31-37.

    [28] 卢灿华, 苏家恩, 盖晓彤, 等. 烤烟霉变病原菌鉴定及其生防菌筛选[J]. 中国烟草科学,2022,43(2):45−51. [LU C H, SU J E, GAI X T, et al. Causal pathogen identification and anta gonistic bacteria screening of tobacco leaf mold[J]. Chinese Tobacco Science,2022,43(2):45−51. doi: 10.13496/j.issn.1007-5119.2022.02.008

    LU C H, SU J E, GAI X T, et al. Causal pathogen identification and anta gonistic bacteria screening of tobacco leaf mold[J]. Chinese Tobacco Science, 2022, 43 (2): 45-51. doi: 10.13496/j.issn.1007-5119.2022.02.008

    [29] 王前程, 张迎迎, 戴陶宇, 等. 拟康宁木霉T-51菌株对番茄枯萎病的生物防治及其机理研究[J]. 西北植物学报,2022,42(6):974−982. [WANG Q C, ZHANG Y Y, DAI T Y, et al. Studyon biological control effect and mechanism of Trichoderma koningiopsis T-51 on tomato fusari umwilt[J]. Acta Botanica Sinica of Northwest China,2022,42(6):974−982. doi: 10.7606/j.issn.1000-4025.2022.06.0974

    [WANG Q C, ZHANG Y Y, DAI T Y, et al. Studyon biological control effect and mechanism of Trichoderma koningiopsis T-51 on tomato fusari umwilt[J]. Acta Botanica Sinica of Northwest China, 2022, 42(6): 974-982. doi: 10.7606/j.issn.1000-4025.2022.06.0974

    [30] 陈哲, 张群英, 杨鼎元, 等. 贵阳市树莓主要病害的鉴定及防控[J]. 现代园艺,2019(11):164−165. [CHEN Z, ZHANG Q Y, YANG D Y, et al. Identification and prevention and control of main raspberry diseases in Guiyang[J]. Xiandai Horticulture,2019(11):164−165. doi: 10.3969/j.issn.1006-4958.2019.11.087

    CHEN Z, ZHANG Q Y, YANG D Y, et al. Identification and prevention and control of main raspberry diseases in Guiyang[J]. Xiandai Horticulture, 2019, (11): 164-165. doi: 10.3969/j.issn.1006-4958.2019.11.087

    [31] 傅俊范, 于舒怡, 严雪瑞, 等. 辽宁树莓灰霉病发生危害及病原鉴定[J]. 北方园艺,2009(6):113−115. [FU J F, YU S Y, YAN X R, et al. Occurrence harm and pathogen identification of botrytis cinerea in Liaoning[J]. Northern Horticulture,2009(6):113−115.

    FU J F, YU S Y, YAN X R, et al. Occurrence harm and pathogen identification of botrytis cinerea in Liaoning[J]. Northern Horticulture, 2009(6): 113-115.

    [32] 孟婷婷. 拟盘和链格属真菌引致树莓新病害的鉴定及其病原学研究[D]. 沈阳: 沈阳农业大学, 2019

    MENG T T. Identification and basic research of raspberry new diseases caused by Pestalotiopsis and Alternaria[D]. Shenyang: Journal of Shenyang Agricultural University, 2019.

    [33] 臧超群, 林秋君, 傅俊范, 等. 辽宁树莓黏菌病病原菌原质团生物学特性研究[J]. 湖北农业科学,2018,57(12):65−68. [ZANG C Q, LIU Q J, FU J F, et al. Study on biological characteristics of pathogen protoplasts of raspberry mycetozoan disease in Liaoning Province[J]. Hubei Agricultural Science,2018,57(12):65−68. doi: 10.14088/j.cnki.issn0439-8114.2018.12.018

    ZANG C Q, LIU Q J, FU J F, et al. Study on biological characteristics of pathogen protoplasts of raspberry mycetozoan disease in Liaoning Province[J]. Hubei Agricultural Science, 2018, 57(12): 65-68. doi: 10.14088/j.cnki.issn0439-8114.2018.12.018

    [34] 尚晓静, 罗妮星, 张富美, 等. 树莓极细链格孢菌叶斑病病原菌鉴定及其生物学特性[J]. 北方园艺,2021(16):24−32. [SHANG X J, LUO N X, ZHANG F M, et al. Identification and biological characteristics of pathogen of Alternaria tenuissima leaf spot of raspberry[J]. Northern Horticulture,2021(16):24−32.

    SHANG X J, LUO N X, ZHANG F M, et al. Identification and biological characteristics of pathogen of Alternaria tenuissima leaf spot of raspberry[J]. Northern Horticulture, 2021(16): 24-32.

图(10)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 网络出版日期:  2023-05-03
  • 刊出日期:  2023-06-30

目录

/

返回文章
返回