Comparison of Nutritional Components and Flavor Substances of Different Muscle Parts of Three Kinds of Tuna Species
-
摘要: 为科学评价大目金枪鱼、黄鳍金枪鱼和蓝鳍金枪鱼不同部位的营养成分与风味物质,采用国标法和Flavorspace®气相色谱-离子迁移谱仪检测了其基本营养成分、氨基酸组成、脂肪酸组成和挥发性风味物质,对比分析不同品种及不同部位间存在的差异。结果表明:三种金枪鱼肌肉的水分含量存在较大差异,不同部位肌肉水分含量为50.16~79.37 g/100 g,其中,蓝鳍金枪鱼肌肉的水分含量显著低于大目和黄鳍金枪鱼(P<0.05)。蓝鳍金枪鱼背部蛋白含量最高,达24.70 g/100 g;蓝鳍金枪鱼腹部脂肪含量高达30.29 g/100 g。大目金枪鱼背部肌肉符合FAO/WHO标准,属于优质蛋白;而大目金枪鱼腹部肌肉、蓝鳍背部和腹部肌肉均接近于FAO/WHO标准,也是良好的蛋白源。三种金枪鱼不同部位肌肉中谷氨酸含量最高,色氨酸含量最低。三种金枪鱼不同部位肌肉共检出31种脂肪酸,其中,二十碳五烯酸(Eicosapentaenoic acid,EPA)和二十二碳六烯酸(Docosahexaenoic acid,DHA)总量较高,二者总量占脂肪酸比例的27.61%~41.73%。共检测到醛类、酮类、醇类、酯类、酸类和烷烃及含氮化合物等40种挥发性风味物质;其中蓝鳍金枪鱼中种类最多,大目金枪鱼最少;同一品种不同部位肌肉中挥发性风味物质的相对含量也存在明显差异。三种金枪鱼不同部位肌肉均具有较高的营养价值,主体风味各不相同;其中蓝鳍金枪鱼背部肌肉必需氨基酸含量高,腹部肌肉不饱和脂肪酸含量丰富,且风味更佳。本研究结果为三种金枪鱼不同部位肌肉的精准加工与利用提供科学依据。Abstract: To scientifically evaluate the nutritional components and flavor substances of different muscle parts of bigeye tuna, yellowfin tuna and bluefin tuna, the differences among different species and parts of three tuna species were compared through basic nutrients, amino acid composition, fatty acid composition and volatile flavor substances, which detected using national standard method and gas chromatography-ion migration spectrometer. The results showed that moisture content of three tuna species was quite different. The moisture content of different muscle parts was varied from 50.16 to 79.37 g/100 g, while the moisture content of bluefin tuna was significantly lower than the other two tuna species (P<0.05). The dorsal muscle of bluefin tuna had the highest protein content (24.70 g/100 g), while the abdominal muscle of bluefin tuna had the highest fat content (30.29 g/100 g). The dorsal muscle of bigeye tuna met the FAO/WHO standard, so it was regarded as the high-quality protein. While the abdominal muscle of bigeye tuna, the dorsal and abdominal muscles of bluefin tuna were close to the FAO/WHO standard, they were regarded as good protein sources. The content of glutamic acid was the highest in the three tuna species, while tryptophan was the lowest. A total of 31 kinds of fatty acids were detected in the three tuna species, including 13 saturated fatty acids, 8 monounsaturated fatty acids and 10 polyunsaturated fatty acids, while the total proportion of DHA and EPA in total fatty acid was 27.61%~41.73%. There were 40 kinds of volatile flavor compounds were detected, including aldehydes, ketones, alcohols, esters, acids, alkanes and nitrogen compounds. Bluefin tuna had the most kinds of volatile compounds, while bigeye tuna had the fewest. The relative contents of volatile compounds in different muscle parts of the same species were also significantly different. The muscles of three tuna species had high nutritional value and different aroma profile. The dorsal muscle of bluefin tuna had high essential amino acid content, while the abdominal muscle had rich unsaturated fatty acid, and better aroma profile. The results provided a reference for the precision processing and utilization of different muscle parts of three tuna species.
-
Keywords:
- tuna /
- muscle /
- amino acid /
- fatty acid /
- volatile flavor compounds
-
金枪鱼,属硬骨鱼纲、鲈形目、鲭科[1],是一种生活在温带与热带海区海洋中上层的洄游鱼类,广泛分布于太平洋、大西洋和印度洋等海域[2-3]。常见的金枪鱼主要包括长鳍金枪鱼(Thunnus alalunga)、黄鳍金枪鱼(Thunnus albacores)、蓝鳍金枪鱼(Thunnus thynnus)、大目金枪鱼(Thunnus obesus)、马苏金枪鱼(Thunnus maccoyii)、大西洋金枪鱼、青甘金枪鱼(Thunnus tonggol)和鲣鱼(Katsuwonus pelamis)等[4]。金枪鱼富含蛋白质、脂肪酸等,尤其是DHA和EPA等n-3多不饱和脂肪酸,有“海洋黄金”之称[2]。
金枪鱼以其丰富的营养和独特的风味,深受消费者的喜爱。金枪鱼肉质鲜滑柔嫩、入口即化,多以生鱼片的方式食用。风味是食品可接受性中的重要因素,风味研究对金枪鱼的品质评价具有重要意义。不同品种的金枪鱼营养成分、风味及价值有很大差异,即便同一品种的金枪鱼不同部位间也存在差异。目前,研究报道多集中在金枪鱼不同品种单个部位或同一品种不同部位之间营养成分的分析与评价[5-11];未见对其风味的研究报道。因此,本研究以常见的大目、黄鳍和蓝鳍金枪鱼背部和腹部肌肉为研究对象,对比分析其营养成分和挥发性风味物质,以期为三种金枪鱼的精准加工与开发利用提供指导。
1. 材料与方法
1.1 材料与仪器
冷冻的大目、黄鳍和蓝鳍金枪鱼背部和腹部肌肉块 山东省中鲁远洋渔业股份有限公司;大目和黄鳍金枪鱼 捕捞区域FAO51,捕捞时间2020年4月;蓝鳍金枪鱼 捕捞区域FAO37.1,捕捞时间2020年2月;三种金枪鱼捕捞后立即宰杀,背部和腹部分别速冻后于−60 ℃冻存。
DHG-9423A型电热恒温鼓风干燥箱 上海精宏实验设备有限公司;K9840凯氏定氮仪 济南海能仪器股份有限公司;ST310索氏脂肪浸提系统 丹麦Foss公司;LX0711箱式高温电阻炉 天津莱玻特瑞仪器设备有限公司;LA8080高速氨基酸分析仪 日本Hitachi公司;5804R离心机 美国Eppendorf公司;7890A气相色谱仪 美国Agilent公司;Flavorspace®气相色谱-离子迁移谱仪(GC-IMS) 德国G.A.S公司。
1.2 实验方法
1.2.1 基本营养成分测定
水分含量按照GB 5009.3-2016《食品安全国家标准 食品中水分的测定》采用直接干燥法测定;灰分含量按照GB 5009.4-2016《食品安全国家标准 食品中灰分的测定》采用第一法测定;蛋白质含量按照GB 5009.5-2016《食品安全国家标准 食品中蛋白质的测定》采用凯氏定氮法测定;脂肪含量按照GB 5009.6-2016《食品安全国家标准 食品中脂肪的测定》采用索氏抽提法测定。
1.2.2 氨基酸测定
按照GB 5009.124-2016《食品安全国家标准 食品中氨基酸的测定》采用氨基酸自动分析仪测定氨基酸含量。
1.2.3 脂肪酸测定
按照GB 5009.168-2016《食品安全国家标准 食品中脂肪酸的测定》采用归一化法测定脂肪酸含量。
1.2.4 GC-IMS检测
检测条件:MXT-WAX极性柱(15 m×0.53 mm,1.0 μm),色谱柱温度40 ℃;载气为N2(纯度≥99.999%);载气流速程序:初始流速2.0 mL·min−1,增速至5.0 mL·min−1,保持2 min;增速至15 mL·min−1,保持8 min;增速至50 mL·min−1,保持5 min;增速至100 mL·min−1,保持5 min;均以线性速率增速。漂移管温度45 ℃;漂移气为N2(纯度≥99.999%)[12]。
称取3.0 g鱼肉于20 mL顶空进样瓶中,用气相离子迁移谱仪进行检测,通过比对NIST数据库和IMS数据库定性分析,采用Gallery Plot功能绘制样品的挥发性成分谱图。
1.3 数据处理
所有指标均做3组重复实验,采用SPSS 19.0对实验数据进行单因素方差分析,统计值用平均值±标准差表示,P<0.05表示差异显著,P>0.05表示差异不显著;采用Gallery Plot软件制图。
2. 结果与分析
2.1 三种金枪鱼不同部位肌肉的基本营养成分
三种金枪鱼不同部位肌肉基本营养成分见表1,由表可知,三种金枪鱼肌肉的水分含量存在较大差异,不同部位肌肉水分含量为50.16~79.37 g/100 g,其中蓝鳍金枪鱼肌肉水分含量显著低于大目和黄鳍金枪鱼(P<0.05)。大目和黄鳍金枪鱼符合水产品高蛋白、低脂肪的特点,这与邹盈等[5]的研究结果基本一致。三种金枪鱼中蓝鳍金枪鱼背部蛋白质含量最高,达24.70 g/100 g;与其它两种金枪鱼不同部位肌肉的蛋白含量存在显著差异(P<0.05)。蓝鳍金枪鱼腹部脂肪含量高达30.29 g/100 g,与其背部及其它两种金枪鱼不同部位肌肉的脂肪含量均存在显著差异(P<0.05),与周胜杰等[6]的研究结果存在明显差异,推测可能与捕捞季节、海域及取样部位等因素相关。黄鳍金枪鱼背部肌肉中灰分含量最高,与其它两种金枪鱼间存在显著差异(P<0.05)。
表 1 三种金枪鱼不同部位肌肉基本营养成分(g/100 g)Table 1. General nutritional compositions in different muscle parts of three kind of tuna species (g/100 g)营养成分 大目金枪鱼 黄鳍金枪鱼 蓝鳍金枪鱼 背部 腹部 背部 腹部 背部 腹部 水分 78.19±1.37a 79.37±1.50a 74.33±1.15b 76.09±1.42b 57.79±0.65c 50.16±0.41d 蛋白质 20.01±0.39d 18.99±0.22e 23.70±0.43b 22.30±0.24c 24.70±0.52a 18.61±0.27e 脂肪 0.98±0.05e 1.09±0.07d 2.41±0.06c 2.68±0.11c 19.34±0.33b 30.29±0.50a 灰分 1.26±0.04b 1.07±0.02c 1.44±0.07a 1.40±0.05a 1.01±0.02d 1.08±0.05c 注:同行不同小写字母表示差异显著(P<0.05),表2~表3同。 2.2 三种金枪鱼不同部位肌肉的氨基酸测定结果
表2为三种金枪鱼不同部位肌肉的氨基酸组成,由表可知,大目、黄鳍和蓝鳍金枪鱼不同部位肌肉中均检测出18种氨基酸,蓝鳍金枪鱼背部肌肉氨基酸总量最高,与其腹部及其它两种金枪鱼不同部位肌肉中氨基酸总量均存在显著差异(P<0.05)。三种金枪鱼背部肌肉氨基酸总量均高于腹部肌肉;背部肌肉氨基酸总量为(19.57~22.52)g/100 g,其中蓝鳍金枪鱼最高,黄鳍金枪鱼最低;腹部肌肉氨基酸总量为(16.93~19.22)g/100 g,黄鳍金枪鱼最高。三种金枪鱼不同部位肌肉必需氨基酸总量为(6.46~8.82)g/100 g,背部肌肉必需氨基酸总量均高于腹部;其中蓝鳍金枪鱼背部肌肉必需氨基酸总量最高。FAO/WHO规定优质蛋白的氨基酸组成标准为:必需氨基酸含量(Essential Amino Acid, EAA)占氨基酸总量(Total Amino Acid, TAA)比值约为40%[9],必需氨基酸和非必需氨基酸(Non-essential Amino Acid, NEAA)的比值在60%以上。由表2可知,大目金枪鱼背部肌肉符合FAO/WHO标准,属于优质蛋白;而大目金枪鱼腹部肌肉、蓝鳍背部和腹部肌肉均接近于FAO/WHO标准,也是良好的蛋白源;黄鳍金枪鱼背部和腹部肌肉略低于FAO/WHO标准。三种金枪鱼不同部位肌肉中谷氨酸的含量最高,色氨酸含量最低,胱氨酸含量次之,这与邹盈等[5]、刘书臣等[10]的研究结论基本一致。赖氨酸是人体必需氨基酸之一,而粮谷类蛋白质的第一限制性氨基酸[2];三种金枪鱼不同部位肌肉中赖氨酸含量均较高,因此食用金枪鱼均可以作为补充赖氨酸的重要途径。谷氨酸、天冬氨酸、丙氨酸和甘氨酸是4种重要的鲜味氨基酸;其组成和含量决定了鱼肉的鲜美程度[13]。三种金枪鱼不同部位肌肉鲜味氨基酸总量(Umami Amino Acid, UAA)为(5.95~7.81) g/100 g,黄鳍金枪鱼腹部肌肉鲜味氨基酸总量最高;不同部位肌肉鲜味氨基酸占氨基酸总量均超过30%,因而均具有鲜美的品质。
表 2 三种金枪鱼不同部位肌肉氨基酸组成(g/100 g)Table 2. Amino acid composition in different muscle parts of three kind of tuna species (g/100 g)氨基酸 大目金枪鱼 黄鳍金枪鱼 蓝鳍金枪鱼 背部 腹部 背部 腹部 背部 腹部 **天冬氨酸Asp 1.74±0.07c 1.64±0.03d 2.18±0.06a 2.06±0.03b 2.18±0.05a 1.60±0.02d *苏氨酸Thr 0.83±0.03b 0.79±0.02c 1.04±0.05a 1.00±0.02a 1.04±0.02a 0.77±0.01c 丝氨酸Ser 0.71±0.03b 0.67±0.01c 0.87±0.02a 0.85±0.01a 0.88±0.01a 0.67±0.01c **谷氨酸Glu 2.68±0.09b 2.56±0.04b 3.22±0.11a 3.11±0.07a 3.15±0.11a 2.30±0.08c **甘氨酸Gly 0.77±0.01c 0.80±0.02c 1.04±0.04b 1.28±0.07a 1.03±0.05b 0.99±0.04b **丙氨酸Ala 1.05±0.02b 1.02±0.01b 1.33±0.04a 1.36±0.02a 1.35±0.07a 1.06±0.04b *缬氨酸Val 1.18±0.09a 0.87±0.02b 0.89±0.02b 0.85±0.01b 1.18±0.03a 0.87±0.01b *蛋氨酸Met 0.55±0.02b 0.52±0.01b 0.71±0.03a 0.67±0.01a 0.70±0.01a 0.51±0.01b *异亮氨酸Ile 1.05±0.03a 0.76±0.01c 0.81±0.02b 0.77±0.01c 1.05±0.03a 0.76±0.01c *亮氨酸Leu 1.74±0.11a 1.26±0.07b 1.40±0.09b 1.32±0.04b 1.74±0.07a 1.26±0.03b 酪氨酸Tyr 0.78±0.01a 0.50±0.01d 0.64±0.01b 0.60±0.01c 0.78±0.01a 0.50±0.01d *苯丙氨酸Phe 0.88±0.05a 0.65±0.03b 0.65±0.03b 0.63±0.03b 0.88±0.01a 0.65±0.01b *赖氨酸Lys 2.02±0.09a 1.46±0.05c 1.63±0.07b 1.53±0.03c 2.02±0.12a 1.46±0.09c 组氨酸His 2.09±0.10a 1.52±0.06b 0.74±0.01c 0.60±0.01c 2.09±0.07a 1.52±0.05b 精氨酸Arg 1.01±0.06b 0.97±0.03b 1.26±0.19a 1.31±0.11a 1.24±0.06a 0.95±0.04b 脯氨酸Pro 0.62±0.01d 0.61±0.01d 0.76±0.04b 0.90±0.05a 0.76±0.02b 0.70±0.01c 胱氨酸Cys 0.22±0.01a 0.18±0.01b 0.24±0.02a 0.22±0.01a 0.24±0.01a 0.18±0.01b *色氨酸Trp 0.13±0.01d 0.15±0.01c 0.16±0.01c 0.16±0.01c 0.21±0.02a 0.18±0.01b 必需氨基酸总量EAA 8.38±0.43a 6.46±0.22c 7.29±0.32b 6.93±0.16b 8.82±0.31a 6.46±0.18c 非必需氨基酸总量NEAA 11.67±0.41b 10.47±0.23c 12.28±0.54b 12.29±0.39b 13.70±0.46a 10.47±0.31c 鲜味氨基酸总量UAA 6.24±0.19b 6.02±0.10b 7.77±0.25a 7.81±0.19a 7.71±0.28a 5.95±0.18b 氨基酸总量TAA 20.05±0.84b 16.93±0.45c 19.57±0.86b 19.22±0.55b 22.52±0.77a 16.93±0.49c EAA/TAA(%) 41.15 37.27 36.43 35.22 38.23 37.08 UAA/TAA(%) 31.12 35.56 39.70 40.63 34.24 35.14 EAA/NEAA(%) 71.81 61.70 59.36 56.39 64.38 61.70 注:*表示必需氨基酸,**表示鲜味氨基酸。 2.3 三种金枪鱼不同部位肌肉脂肪酸测定结果
三种金枪鱼不同部位肌肉的脂肪酸组成和比例如表3所示,共检出31种脂肪酸,包括13种饱和脂肪酸、8种单不饱和脂肪酸和10种多不饱和脂肪酸,其脂肪酸组成和含量均存在明显差异。由表可知,三种金枪鱼不同部位肌肉中饱和脂肪酸占总脂肪酸的比例为25.50%~34.71%,腹部肌肉饱和脂肪酸占总脂肪酸的比例均高于背部,黄鳍和蓝鳍金枪鱼不同部位肌肉中饱和脂肪酸占总脂肪酸的比例差异显著(P<0.05);蓝鳍金枪鱼背部和腹部肌肉的饱和脂肪酸以肉豆蔻酸(C14:0)、棕榈酸(C16:0)和硬脂酸(C18:0)为主,而大目和黄鳍金枪鱼以棕榈酸(C16:0)和硬脂酸(C18:0)为主。黄鳍和蓝鳍金枪鱼不同部位肌肉中单不饱和脂肪酸占总脂肪酸的比例差异显著(P<0.05),大目和黄鳍金枪鱼单不饱和脂肪酸中油酸(C18:1(cis)-9c)和鲨油酸(C24:1)含量较高;而蓝鳍金枪鱼则是油酸(C18:1(cis)-9c)和棕榈油酸(C16:1)含量较高。同一品种金枪鱼不同部位肌肉中多不饱和脂肪酸占总脂肪酸的比例无显著差异(P>0.05),大目和黄鳍金枪鱼多不饱和脂肪酸以DHA(C22:6)、花生四烯酸(C20:4)和EPA(C20:5)为主,而蓝鳍金枪鱼以DHA(C22:6)和EPA(C20:5)为主;EPA具有预防心血管疾病、降血压、显著降低动脉粥样硬化等功能,DHA则对人智力和视力的发育起着至关重要的作用[12]。三种金枪鱼中DHA(C22:6n-3)和EPA(C20:5n-3)二者占脂肪酸的比例为27.61%~41.73%。虽然蓝鳍金枪鱼DHA和EPA占脂肪酸比例低于其它两种金枪鱼,但由于蓝鳍金枪鱼脂肪含量显著高于大目和黄鳍金枪鱼(P<0.05)。因此,蓝鳍背部和腹部肌肉中DHA和EPA含量高于其它2种金枪鱼,这也是蓝鳍金枪鱼经济价值较高的原因之一。蓝鳍金枪鱼单、多不饱和脂肪酸之和占总脂肪酸的比例高于大目和黄鳍金枪鱼;三种金枪鱼中蓝鳍金枪鱼背部和腹部肌肉饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸的比例非常接近1:1:1,符合WHO/FAO建议的膳食脂肪酸摄入比例。
表 3 三种金枪鱼不同部位肌肉脂肪酸组成(%)Table 3. Fatty acid composition in different muscle parts of three kind of tuna species (%)脂肪酸 大目金枪鱼 黄鳍金枪鱼 蓝鳍金枪鱼 背部 腹部 背部 腹部 背部 腹部 C10:0 0.09±0.00a 0.11±0.01a 0.15±0.03a 0.13±0.02a 0.01±0.00b 0.00±0.00b C12:0 0.10±0.01b 0.10±0.01b 0.09±0.02b 0.15±0.01a 0.07±0.01b 0.03±0.00c C13:0 ND ND ND 0.03±0.00b 0.05±0.01a 0.03±0.00b C14:0 0.33±0.05c 0.48±0.08c 0.39±0.05c 0.50±0.04c 5.10±0.12a 3.93±0.10b C15:0 0.29±0.06b 0.35±0.02b 0.29±0.03b 0.34±0.02b 0.59±0.05a 0.53±0.03a C16:0 21.90±0.95a 22.18±0.72a 17.21±0.91b 20.57±0.63a 13.89±0.41c 16.95±0.38b C17:0 0.62±0.04c 0.69±0.02b 0.61±0.01c 0.70±0.02b 0.57±0.01d 0.76±0.03a C18:0 10.00±0.42b 10.25±0.27a 11.53±0.45a 11.02±0.39a 4.99±0.12d 6.50±0.25c C20:0 0.11±0.01d 0.18±0.01c 0.12±0.01d 0.21±0.01b 0.13±0.01d 0.27±0.02a C21:0 0.00±0.00c ND ND ND 0.04±0.00b 0.07±0.01a C22:0 0.16±0.01b 0.17±0.02b 0.19±0.03b 0.22±0.01a 0.04±0.01d 0.09±0.01c C23:0 ND ND ND 0.12±0.01a ND 0.03±0.00b C24:0 0.17±0.01b 0.20±0.01b 0.22±0.02b 0.43±0.05a 0.02±0.00c 0.06±0.01c SFA 33.77±1.56a 34.71±1.17a 30.80±1.56b 34.42±1.21a 25.50±0.75c 29.25±0.85b C14:1 ND ND ND ND 0.09±0.01a 0.05±0.01b C15:1 ND ND ND ND 0.01±0.00 ND C16:1 1.14±0.17c 1.27±0.08c 1.42±0.11c 1.25±0.24c 3.12±0.26b 4.14±0.39a C18:1 (trans)-9t ND ND ND ND 0.17±0.05b 0.73±0.04a C18:1 (cis)-9c 10.85±1.31d 11.58±1.25d 15.13±1.32c 10.73±0.99d 17.40±1.11b 22.95±1.53a C20:1-11c 0.41±0.05d 0.98±0.07c 0.28±0.02e 0.47±0.08d 16.32±0.85a 2.56±0.18b C22:1 (n-9) 0.15±0.01c 0.26±0.03c 0.08±0.01d 0.21±0.02c 0.98±0.09a 0.80±0.09b C24:1 2.84±0.43a 2.48±0.31a 2.70±0.29a 2.19±0.33a 0.80±0.04b 1.04±0.21b MUFA 13.39±1.97d 16.57±1.74c 19.61±1.75c 14.85±1.66d 38.89±2.41a 32.27±2.45b C18:2(trans)-9t,12t ND ND ND ND 0.23±0.04b 0.47±0.03a C18:2(cis)-9c,12c 1.13±0.39b 1.10±0.20b 1.58±0.12a 1.48±0.35a 1.58±0.22a 1.75±0.14a C18:3 (GLA)-r ND ND ND ND 0.13±0.01b 0.21±0.01a C18:3 (ALA)-a 0.09±0.03d 0.20±0.01c 0.16±0.02c 0.10±0.01e 1.29±0.16b 6.56±0.48a C20:2-11c,14c 0.32±0.07a 0.37±0.06a 0.32±0.07a 0.29±0.02a 0.35±0.03a 0.36±0.04a C20:3 (n-6) 0.19±0.03b 0.22±0.03b 0.23±0.03b 0.28±0.02a 0.12±0.01c 0.16±0.01c C20:4 (ARA) 9.41±0.58a 8.27±0.41b 8.31±0.55b 6.87±0.39c 1.03±0.07d 1.33±0.20d C22:2 ND ND ND ND ND 0.03±0.01 C20:5 (EPA) 3.49±0.16b 3.47±0.33b 3.14±0.29b 3.73±0.46b 8.88±0.70a 9.36±0.58a C22:6 (DHA) 36.22±0.99a 35.08±1.54a 35.86±1.08b 38.00±1.52a 22.05±0.85b 18.25±0.71c EPA+DHA 39.71±1.15a 38.55±1.87a 39.00±1.37a 41.73±1.98a 30.93±1.55b 27.61±1.29c PUFA 50.85±2.25a 48.71±2.58a 49.60±2.16a 50.75±2.77a 35.56±2.09b 38.48±2.20b 注:SFA为饱和脂肪酸,MUFA为单不饱和脂肪酸,PUFA为多不饱和脂肪酸,ND表示未检出。 2.4 三种金枪鱼不同部位肌肉风味分析
通过与GC×IMS库比较可知,三种金枪鱼背部和腹部肌肉共检测到醛类、酮类、醇类、酯类、酸类和烷烃及含氮化合物等40种挥发性风味物质(表4)。
表 4 三种金枪鱼不同部位肌肉挥发性风味物质组成Table 4. Volatile flavor substances in different muscle parts of three kind of tuna species序号 名称 保留时间(s) 迁移时间(ms) 1 E,E-2,4-庚二烯醛(E,E-2,4-Heptadienal) 820,457 11,907 2 乙酸己酯(Hexylacetate) 811,08 14,001 3 3-辛醇(3-Octanol) 766,576 13,942 4 2,4-庚二烯醛(2,4-Heptadienal) 788,18 11,949 5 1-辛烯-3-醇(1-Octen-3-ol) 752,749 11,598 6 正庚醇(1-Heptanol) 729,465 13,994 7 2-乙酰呋喃-M(2-acetylfuran-M) 540,354 11,096 8 N-亚硝基二乙胺(N-nitrosodiethylamine) 515,944 11,478 9 庚醛-M(Heptanal-M) 524,223 13,346 10 3-甲硫基丙醛(Methional) 523,757 13,947 11 2-乙酰呋喃-D(2-Acetylfuran-D) 523,766 14,278 12 庚醛-D(Heptanal-D) 522,66 16,927 13 正己醇(n-Hexanol) 449,621 13,304 14 2-甲基-1-戊醇(2-Methyl-1-pentanol) 403,471 12,936 15 E-2-己烯醛(E-2-Hexenal) 406,691 11,797 16 正戊醇-M(pentan-1-ol-M) 265,462 12,557 17 正戊醇-D(pentan-1-ol-D) 265,462 15,077 18 E-2-戊烯醛-M(E-2-pentenal-M) 248,109 11,106 19 E-2-戊烯醛-D(E-2-pentenal-D) 247,518 13,606 20 2-甲基丁醇(2-methylbutan-1-ol) 234,13 12,198 21 丙酸(Propanoic acid) 192,886 11,136 22 戊醛-M(Pentanal-M) 188,992 11,835 23 2,3-戊二酮(2,3-pentanedione) 187,578 12,241 24 戊醛-D(Pentanal-D) 187,346 14,179 25 2-戊酮-D(2-Pentanone-D) 180,479 1,372 26 三乙胺(Triethylamine) 177,119 12,203 27 2-戊酮-M(2-Pentanone-M) 181,054 1,122 28 乙酸异丙酯(Isopropyl acetate) 158,152 11,705 29 2-甲基丁醛-M(2-methylbutanal-M) 164,673 11,564 30 乙酸乙酯-M(aceticacidethylester-M) 137,252 10,997 31 2-丁酮-D(2-Butanone-D) 129,16 12,494 32 1-丙醇-D(1-propanol-D) 114,691 12,452 33 乙酸乙酯-D(aceticacidethylester-D) 135,935 13,332 34 1,4-二氧六环(1,4-dioxane) 201,479 13,276 35 丙酸乙酯(ethyl propanoate) 201,387 11,551 36 己醛-D(Hexanal-D) 307,809 1,558 37 2-甲基丁醛-D(2-methylbutanal-D) 163,579 13,905 38 己醛-M(Hexanal-M) 313,623 12,535 39 1-丙醇-M(1-propanol-M) 115,277 11,101 40 2-丁酮-M(2-Butanone-M) 129,079 10,585 图1是三种金枪鱼不同部位肌肉挥发性风味物质的主成分分析(Principal Component Analysis,PCA),如图所示,第1主成分和第2主成分的总贡献率为90.00%,可以用来代表三种金枪鱼不同部位肌肉的整体信息。从图1可以看出,蓝鳍金枪鱼与大目、黄鳍金枪鱼三者的挥发性风味物质之间有明显差异,三种金枪鱼不同部位肌肉挥发性风味物质间没有重叠,GC-IMS可以有效区分三种金枪鱼。
采用Gallery Plot软件将每个化合物在不同样品中的信号峰排列在一起得到指纹图谱(图2),图中每列代表一种挥发性化合物,每行代表一个样本;每组3平行,颜色深度表示挥发性化合物的浓度。由于高浓度单体离子和中性分子可能会在漂移区形成二聚体形式,因此单一化合物可能会产生多种信号,即同一化合物的单聚体(M)和二聚体(D)。由图2可以清晰地看出挥发性化合物在不同品种金枪鱼中的分布情况,三种金枪鱼中挥发性化合物种类和相对含量均存在明显差异,其中蓝鳍金枪鱼中挥发性化合物种类最多,大目金枪鱼最少;同一品种不同部位肌肉中挥发性化合物的相对含量也存在明显差异。蓝鳍金枪鱼腹部肌肉中2-戊酮-D、2-戊酮-M、戊醛-D、戊醛-M、E,E-2,4-庚二烯醛、乙酸己酯、2-乙酰呋喃-D、 E-2-戊烯醛-M、3-甲硫基丙醛、乙酸乙酯-M、乙酸乙酯-D的相对含量较背部高,背部肌肉中丙酸、正己醇、三乙胺、1-丙醇-M、1-丙醇-D、己醛-D等相对含量较高。大目金枪鱼背部肌肉中乙酸乙酯-M、乙酸乙酯-D的相对含量较腹部高,腹部肌肉中丙酸乙酯、1,4-二氧六环的相对含量较高。黄鳍金枪鱼背部肌肉中乙酸异丙酯、乙酸乙酯-M、乙酸乙酯-D的相对含量较腹部高,而腹部肌肉中2-丁酮-D、2-丁酮-M、2-戊酮-M、2,3-戊二酮的相对含量较高;挥发性风味物质组成和含量的差异使其形成了各自的风味特征。
醛类物质是三种金枪鱼中分离鉴定出的种类最多的挥发性化合物,可能来源于不饱和脂肪酸氧化后形成的过氧化物的裂解[14],因其阈值较低,对三种金枪鱼的总体风味具有重要贡献。己醛、戊醛、庚醛等饱和直链醛常呈现出腥味、草味、脂肪味等[15],戊醛-M是三种金枪鱼肌肉中的共有化合物,是金枪鱼的主体风味物质,可能是金枪鱼的腥味来源;2-甲基丁醛被认为是鱼露的特征风味化合物[16-17],在虾干中也被检测到[18-19],呈现处独特的香味,也是黄鳍金枪鱼的特征化合物,可赋予黄鳍金枪鱼愉快的香气;3-甲硫基丙醛具有马铃薯香味[20],E,E-2,4-庚二烯醛贡献青香、脂肪香、蔬菜香和油腻的气味[21],这些物质对蓝鳍金枪鱼的整体风味有很大贡献,给鱼肉带来蔬菜香和脂肪香。醇类物质的阈值较高,对风味的贡献小;但不饱和醇的阈值较低,对风味有很大贡献[22]。1-辛烯-3-醇普遍存在于鱼类的挥发性风味物质中[23],在鱼露和虾酱中都有被检测到[20,24],类似蘑菇气味[25-27]。蓝鳍金枪鱼中检测到多种醇类化合物,包括1-丙醇、正戊醇和1-辛烯-3-醇,给鱼肉带来淡淡的清香味。酮类物质主要由脂肪酸的氧化降解以及醇类物质的氧化生成[28-29],2-丁酮具有水果香气[30],2-戊酮对干海带良好香气的形成有贡献[31],这类物质为三种金枪鱼贡献了清香气味。检出的酯类物质包括乙酸己酯、乙酸异丙酯、丙酸乙酯、乙酸乙酯等,可以赋予食品果香的特性[32],乙酸乙酯在黄鱼、鲤鱼、马鲛鱼中都被检出[33],对金枪鱼的整体风味也有一定的贡献。含氮杂环化合物主要来源于氨基酸和碳水化合物之间发生的美拉德反应或氨基酸的热分解,呋喃化合物可由多种途径产生[34],主要源于脂质或硫胺素的热降解[35],是蓝鳍金枪鱼特有的风味物质,具有很强的肉香味以及极低的香气阈值[36],可能是蓝鳍金枪鱼区别于其他品种金枪鱼的重要风味物质,2-乙酰呋喃主要表现为坚果味、甜的焦香味等[37]。综上,蓝鳍金枪鱼背部肌肉的气味特征主要是淡淡的青香味;腹部肌肉呈现蔬菜香、脂肪香味。大目金枪鱼背部和腹部肌肉中酯类化合物的相对含量较高,均主要呈现清甜的果香味。黄鳍金枪鱼背部肌肉主要呈现令人愉快的果香味;而腹部肌肉则主要呈现清香味。
3. 结论
大目、黄鳍和蓝鳍三种金枪鱼不同部位肌肉的基本营养组成存在明显差异,蓝鳍金枪鱼背部蛋白质含量最高,达24.70 g/100 g,与其它两种金枪鱼不同部位肌肉的蛋白含量存在显著差异(P<0.05)。蓝鳍金枪鱼腹部脂肪含量高达30.29 g/100 g,与其背部及其它两种金枪鱼不同部位肌肉的脂肪含量均存在显著差异(P<0.05);三种金枪鱼中蓝鳍金枪鱼蛋白和脂肪含量均较高,而大目和黄鳍金枪鱼蛋白含量较高、脂肪含量较低。三种金枪鱼不同部位肌肉中含有丰富的不饱和脂肪酸,且DHA和EPA占总脂肪酸的比例为27.61%~41.73%;蓝鳍金枪鱼背部和腹部肌肉中饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸的比例非常接近1:1:1,符合WHO/FAO建议的膳食脂肪酸摄入比例。三种金枪鱼不同部位肌肉挥发性风味物质的种类和相对含量均存在明显差异,其中蓝鳍金枪鱼中挥发性化合物种类最多,大目金枪鱼最少;同一品种不同部位肌肉中挥发性化合物的相对含量也存在明显差异,其组成和含量的差异使得三种金枪鱼不同部位肌肉形成了各自的风味特征。因此,三种金枪鱼中蓝鳍金枪鱼营养更丰富,背部肌肉必需氨基酸含量高,腹部肌肉含有丰富的不饱和脂肪酸且风味更佳。
-
表 1 三种金枪鱼不同部位肌肉基本营养成分(g/100 g)
Table 1 General nutritional compositions in different muscle parts of three kind of tuna species (g/100 g)
营养成分 大目金枪鱼 黄鳍金枪鱼 蓝鳍金枪鱼 背部 腹部 背部 腹部 背部 腹部 水分 78.19±1.37a 79.37±1.50a 74.33±1.15b 76.09±1.42b 57.79±0.65c 50.16±0.41d 蛋白质 20.01±0.39d 18.99±0.22e 23.70±0.43b 22.30±0.24c 24.70±0.52a 18.61±0.27e 脂肪 0.98±0.05e 1.09±0.07d 2.41±0.06c 2.68±0.11c 19.34±0.33b 30.29±0.50a 灰分 1.26±0.04b 1.07±0.02c 1.44±0.07a 1.40±0.05a 1.01±0.02d 1.08±0.05c 注:同行不同小写字母表示差异显著(P<0.05),表2~表3同。 表 2 三种金枪鱼不同部位肌肉氨基酸组成(g/100 g)
Table 2 Amino acid composition in different muscle parts of three kind of tuna species (g/100 g)
氨基酸 大目金枪鱼 黄鳍金枪鱼 蓝鳍金枪鱼 背部 腹部 背部 腹部 背部 腹部 **天冬氨酸Asp 1.74±0.07c 1.64±0.03d 2.18±0.06a 2.06±0.03b 2.18±0.05a 1.60±0.02d *苏氨酸Thr 0.83±0.03b 0.79±0.02c 1.04±0.05a 1.00±0.02a 1.04±0.02a 0.77±0.01c 丝氨酸Ser 0.71±0.03b 0.67±0.01c 0.87±0.02a 0.85±0.01a 0.88±0.01a 0.67±0.01c **谷氨酸Glu 2.68±0.09b 2.56±0.04b 3.22±0.11a 3.11±0.07a 3.15±0.11a 2.30±0.08c **甘氨酸Gly 0.77±0.01c 0.80±0.02c 1.04±0.04b 1.28±0.07a 1.03±0.05b 0.99±0.04b **丙氨酸Ala 1.05±0.02b 1.02±0.01b 1.33±0.04a 1.36±0.02a 1.35±0.07a 1.06±0.04b *缬氨酸Val 1.18±0.09a 0.87±0.02b 0.89±0.02b 0.85±0.01b 1.18±0.03a 0.87±0.01b *蛋氨酸Met 0.55±0.02b 0.52±0.01b 0.71±0.03a 0.67±0.01a 0.70±0.01a 0.51±0.01b *异亮氨酸Ile 1.05±0.03a 0.76±0.01c 0.81±0.02b 0.77±0.01c 1.05±0.03a 0.76±0.01c *亮氨酸Leu 1.74±0.11a 1.26±0.07b 1.40±0.09b 1.32±0.04b 1.74±0.07a 1.26±0.03b 酪氨酸Tyr 0.78±0.01a 0.50±0.01d 0.64±0.01b 0.60±0.01c 0.78±0.01a 0.50±0.01d *苯丙氨酸Phe 0.88±0.05a 0.65±0.03b 0.65±0.03b 0.63±0.03b 0.88±0.01a 0.65±0.01b *赖氨酸Lys 2.02±0.09a 1.46±0.05c 1.63±0.07b 1.53±0.03c 2.02±0.12a 1.46±0.09c 组氨酸His 2.09±0.10a 1.52±0.06b 0.74±0.01c 0.60±0.01c 2.09±0.07a 1.52±0.05b 精氨酸Arg 1.01±0.06b 0.97±0.03b 1.26±0.19a 1.31±0.11a 1.24±0.06a 0.95±0.04b 脯氨酸Pro 0.62±0.01d 0.61±0.01d 0.76±0.04b 0.90±0.05a 0.76±0.02b 0.70±0.01c 胱氨酸Cys 0.22±0.01a 0.18±0.01b 0.24±0.02a 0.22±0.01a 0.24±0.01a 0.18±0.01b *色氨酸Trp 0.13±0.01d 0.15±0.01c 0.16±0.01c 0.16±0.01c 0.21±0.02a 0.18±0.01b 必需氨基酸总量EAA 8.38±0.43a 6.46±0.22c 7.29±0.32b 6.93±0.16b 8.82±0.31a 6.46±0.18c 非必需氨基酸总量NEAA 11.67±0.41b 10.47±0.23c 12.28±0.54b 12.29±0.39b 13.70±0.46a 10.47±0.31c 鲜味氨基酸总量UAA 6.24±0.19b 6.02±0.10b 7.77±0.25a 7.81±0.19a 7.71±0.28a 5.95±0.18b 氨基酸总量TAA 20.05±0.84b 16.93±0.45c 19.57±0.86b 19.22±0.55b 22.52±0.77a 16.93±0.49c EAA/TAA(%) 41.15 37.27 36.43 35.22 38.23 37.08 UAA/TAA(%) 31.12 35.56 39.70 40.63 34.24 35.14 EAA/NEAA(%) 71.81 61.70 59.36 56.39 64.38 61.70 注:*表示必需氨基酸,**表示鲜味氨基酸。 表 3 三种金枪鱼不同部位肌肉脂肪酸组成(%)
Table 3 Fatty acid composition in different muscle parts of three kind of tuna species (%)
脂肪酸 大目金枪鱼 黄鳍金枪鱼 蓝鳍金枪鱼 背部 腹部 背部 腹部 背部 腹部 C10:0 0.09±0.00a 0.11±0.01a 0.15±0.03a 0.13±0.02a 0.01±0.00b 0.00±0.00b C12:0 0.10±0.01b 0.10±0.01b 0.09±0.02b 0.15±0.01a 0.07±0.01b 0.03±0.00c C13:0 ND ND ND 0.03±0.00b 0.05±0.01a 0.03±0.00b C14:0 0.33±0.05c 0.48±0.08c 0.39±0.05c 0.50±0.04c 5.10±0.12a 3.93±0.10b C15:0 0.29±0.06b 0.35±0.02b 0.29±0.03b 0.34±0.02b 0.59±0.05a 0.53±0.03a C16:0 21.90±0.95a 22.18±0.72a 17.21±0.91b 20.57±0.63a 13.89±0.41c 16.95±0.38b C17:0 0.62±0.04c 0.69±0.02b 0.61±0.01c 0.70±0.02b 0.57±0.01d 0.76±0.03a C18:0 10.00±0.42b 10.25±0.27a 11.53±0.45a 11.02±0.39a 4.99±0.12d 6.50±0.25c C20:0 0.11±0.01d 0.18±0.01c 0.12±0.01d 0.21±0.01b 0.13±0.01d 0.27±0.02a C21:0 0.00±0.00c ND ND ND 0.04±0.00b 0.07±0.01a C22:0 0.16±0.01b 0.17±0.02b 0.19±0.03b 0.22±0.01a 0.04±0.01d 0.09±0.01c C23:0 ND ND ND 0.12±0.01a ND 0.03±0.00b C24:0 0.17±0.01b 0.20±0.01b 0.22±0.02b 0.43±0.05a 0.02±0.00c 0.06±0.01c SFA 33.77±1.56a 34.71±1.17a 30.80±1.56b 34.42±1.21a 25.50±0.75c 29.25±0.85b C14:1 ND ND ND ND 0.09±0.01a 0.05±0.01b C15:1 ND ND ND ND 0.01±0.00 ND C16:1 1.14±0.17c 1.27±0.08c 1.42±0.11c 1.25±0.24c 3.12±0.26b 4.14±0.39a C18:1 (trans)-9t ND ND ND ND 0.17±0.05b 0.73±0.04a C18:1 (cis)-9c 10.85±1.31d 11.58±1.25d 15.13±1.32c 10.73±0.99d 17.40±1.11b 22.95±1.53a C20:1-11c 0.41±0.05d 0.98±0.07c 0.28±0.02e 0.47±0.08d 16.32±0.85a 2.56±0.18b C22:1 (n-9) 0.15±0.01c 0.26±0.03c 0.08±0.01d 0.21±0.02c 0.98±0.09a 0.80±0.09b C24:1 2.84±0.43a 2.48±0.31a 2.70±0.29a 2.19±0.33a 0.80±0.04b 1.04±0.21b MUFA 13.39±1.97d 16.57±1.74c 19.61±1.75c 14.85±1.66d 38.89±2.41a 32.27±2.45b C18:2(trans)-9t,12t ND ND ND ND 0.23±0.04b 0.47±0.03a C18:2(cis)-9c,12c 1.13±0.39b 1.10±0.20b 1.58±0.12a 1.48±0.35a 1.58±0.22a 1.75±0.14a C18:3 (GLA)-r ND ND ND ND 0.13±0.01b 0.21±0.01a C18:3 (ALA)-a 0.09±0.03d 0.20±0.01c 0.16±0.02c 0.10±0.01e 1.29±0.16b 6.56±0.48a C20:2-11c,14c 0.32±0.07a 0.37±0.06a 0.32±0.07a 0.29±0.02a 0.35±0.03a 0.36±0.04a C20:3 (n-6) 0.19±0.03b 0.22±0.03b 0.23±0.03b 0.28±0.02a 0.12±0.01c 0.16±0.01c C20:4 (ARA) 9.41±0.58a 8.27±0.41b 8.31±0.55b 6.87±0.39c 1.03±0.07d 1.33±0.20d C22:2 ND ND ND ND ND 0.03±0.01 C20:5 (EPA) 3.49±0.16b 3.47±0.33b 3.14±0.29b 3.73±0.46b 8.88±0.70a 9.36±0.58a C22:6 (DHA) 36.22±0.99a 35.08±1.54a 35.86±1.08b 38.00±1.52a 22.05±0.85b 18.25±0.71c EPA+DHA 39.71±1.15a 38.55±1.87a 39.00±1.37a 41.73±1.98a 30.93±1.55b 27.61±1.29c PUFA 50.85±2.25a 48.71±2.58a 49.60±2.16a 50.75±2.77a 35.56±2.09b 38.48±2.20b 注:SFA为饱和脂肪酸,MUFA为单不饱和脂肪酸,PUFA为多不饱和脂肪酸,ND表示未检出。 表 4 三种金枪鱼不同部位肌肉挥发性风味物质组成
Table 4 Volatile flavor substances in different muscle parts of three kind of tuna species
序号 名称 保留时间(s) 迁移时间(ms) 1 E,E-2,4-庚二烯醛(E,E-2,4-Heptadienal) 820,457 11,907 2 乙酸己酯(Hexylacetate) 811,08 14,001 3 3-辛醇(3-Octanol) 766,576 13,942 4 2,4-庚二烯醛(2,4-Heptadienal) 788,18 11,949 5 1-辛烯-3-醇(1-Octen-3-ol) 752,749 11,598 6 正庚醇(1-Heptanol) 729,465 13,994 7 2-乙酰呋喃-M(2-acetylfuran-M) 540,354 11,096 8 N-亚硝基二乙胺(N-nitrosodiethylamine) 515,944 11,478 9 庚醛-M(Heptanal-M) 524,223 13,346 10 3-甲硫基丙醛(Methional) 523,757 13,947 11 2-乙酰呋喃-D(2-Acetylfuran-D) 523,766 14,278 12 庚醛-D(Heptanal-D) 522,66 16,927 13 正己醇(n-Hexanol) 449,621 13,304 14 2-甲基-1-戊醇(2-Methyl-1-pentanol) 403,471 12,936 15 E-2-己烯醛(E-2-Hexenal) 406,691 11,797 16 正戊醇-M(pentan-1-ol-M) 265,462 12,557 17 正戊醇-D(pentan-1-ol-D) 265,462 15,077 18 E-2-戊烯醛-M(E-2-pentenal-M) 248,109 11,106 19 E-2-戊烯醛-D(E-2-pentenal-D) 247,518 13,606 20 2-甲基丁醇(2-methylbutan-1-ol) 234,13 12,198 21 丙酸(Propanoic acid) 192,886 11,136 22 戊醛-M(Pentanal-M) 188,992 11,835 23 2,3-戊二酮(2,3-pentanedione) 187,578 12,241 24 戊醛-D(Pentanal-D) 187,346 14,179 25 2-戊酮-D(2-Pentanone-D) 180,479 1,372 26 三乙胺(Triethylamine) 177,119 12,203 27 2-戊酮-M(2-Pentanone-M) 181,054 1,122 28 乙酸异丙酯(Isopropyl acetate) 158,152 11,705 29 2-甲基丁醛-M(2-methylbutanal-M) 164,673 11,564 30 乙酸乙酯-M(aceticacidethylester-M) 137,252 10,997 31 2-丁酮-D(2-Butanone-D) 129,16 12,494 32 1-丙醇-D(1-propanol-D) 114,691 12,452 33 乙酸乙酯-D(aceticacidethylester-D) 135,935 13,332 34 1,4-二氧六环(1,4-dioxane) 201,479 13,276 35 丙酸乙酯(ethyl propanoate) 201,387 11,551 36 己醛-D(Hexanal-D) 307,809 1,558 37 2-甲基丁醛-D(2-methylbutanal-D) 163,579 13,905 38 己醛-M(Hexanal-M) 313,623 12,535 39 1-丙醇-M(1-propanol-M) 115,277 11,101 40 2-丁酮-M(2-Butanone-M) 129,079 10,585 -
[1] 许文杰, 熊雄, 黄曼虹, 等. 金枪鱼制品中几种 DNA 提取方法的效果比较[J]. 现代食品科技,2012,37(7):57−65. [XU W J, XIONG X, HUANG M H, et al. Comparison of extraction effect of several DNA extraction methods in tuna products[J]. Modern Food Science and Technology,2012,37(7):57−65. [2] 杨彩莉, 曹晓杰, 张渊超, 等. 3种金枪鱼头不同部位成分比较及营养学评价[J]. 肉类研究,2019,33(10):8−14. [YANG C L, CAO X J, ZHANG Y C, et al. Comparative composition and nutritional evaluation of different head parts of three tuna species[J]. Meat Research,2019,33(10):8−14. [3] 苏阳, 章超桦, 曹文红, 等. 南海产3 种金枪鱼普通肉、暗色肉营养成分分析与评价[J]. 广东海洋大学学报,2015,35(3):87−93. [SU Y, ZHANG C H, CAO W H, et al. Analysis and evaluation of nutritional components in ordinary muscle and dark muscle of three species of tuna from south China sea[J]. Journal of Guangdong Ocean University,2015,35(3):87−93. doi: 10.3969/j.issn.1673-9159.2015.03.013 [4] 周聃, 冯俊丽, 过雯婷, 等. 两种大洋性金枪鱼背部肌肉的差异蛋白组学分析[J]. 中国食品学报,2018,18(7):278−285. [ZHOU D, FENG J L, GUO W T, et al. Analysis of differential proteome in back muscle of Thunnus alalunga and Thunnus albacores[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(7):278−285. doi: 10.16429/j.1009-7848.2018.07.034 [5] 邹盈, 李彦坡, 戴志远, 等. 三种金枪鱼营养成分分析与评价[J]. 农产品加工,2018,456(10):47−51. [ZOU Y, LI Y P, DAI Z Y, et al. Analysis and evaluation on nutritional components of three kinds of Tuna[J]. Farm Products Processing,2018,456(10):47−51. doi: 10.16693/j.cnki.1671-9646(X).2018.05.043 [6] 周胜杰, 杨蕊, 于刚, 等. 美济礁附近海域3种金枪鱼肌肉成分检测与营养评价[J]. 南方水产科学,2021,17(2):51−59. [ZHOU S J, YANG R, YU G, et al. Muscle composition determination and nutrition evaluation of three tuna species near Meiji Reef[J]. South China Fisheries Science,2021,17(2):51−59. doi: 10.12131/20200229 [7] 杨金生, 霍健聪, 夏松养. 不同品种金枪鱼营养成分的研究与分析[J]. 浙江海洋学院学报:自然科学版,2013(5):393−397. [YANG J S, HUO J C, XIA S Y. The analysis of nutrients of different tuna[J]. Journal of Zhejiang Ocean University (Natural Science),2013(5):393−397. [8] 童铃, 金毅, 徐坤华, 等. 3 种鲣鱼背部肌肉的营养成分分析及评价[J]. 南方水产科学,2014,10(5):51−59. [TONG L, JIN Y, XU K H, et al. Analysis of nutritional components in back muscle of skipjacks[J]. South China Fisheries Science,2014,10(5):51−59. doi: 10.3969/j.issn.2095-0780.2014.05.008 [9] 郑振霄, 童玲, 徐坤华, 等. 2 种低值金枪鱼赤身肉的营养成分分析与评价[J]. 食品科学,2015,36(10):114−118. [ZHENG Z X, TONG L, XU K H, et al. Analysis and quality evaluation of nutritional components in the muscle of two species of low value Tuna[J]. Food Science,2015,36(10):114−118. doi: 10.7506/spkx1002-6630-201510023 [10] 刘书臣, 李仁伟, 廖明涛, 等. 大目金枪鱼不同部位肌肉的营养成分分析与评价[J]. 食品工业科技,2013,34(23):340−348. [LIU S C, LI R W, LIAO M W, et al. Nutritional components analysis and quality evaluation of different muscle parts of bigeye tuna[J]. Science and Technology of Food Industry,2013,34(23):340−348. doi: 10.13386/j.issn1002-0306.2013.23.065 [11] 王峰, 杨金生, 尚艳丽, 等. 黄鳍金枪鱼营养成分的研究与分析[J]. 食品工业,2013,34(1):187−189. [WANG F, YANG J S, SHANG Y L, et al. Study on edible quality of yellowfin (Tunathunnus albacares) dorsal meat[J]. Food Industry,2013,34(1):187−189. [12] 赵玲, 曹荣, 刘淇, 等. 银鲑不同部位肌肉的营养评价与特征风味分析[J]. 核农学报,2022,36(2):384−391. [ZHAO L, CAO R, LIU Q, et al. Nutritional evaluation and characteristic flavor analysis of different muscle parts of Oncorhynchus kisutch[J]. Journal of Nuclear Agricultural Science,2022,36(2):384−391. doi: 10.11869/j.issn.100-8551.2022.02.0384 [13] 黄攀, 王文秋, 宫臣, 等. 大型鲟鱼不同部位肌肉的营养成分分析[J]. 食品研究与开发,2020,41(18):162−168. [HUANG P, WANG W Q, GONG C, et al. Chemical compositions of different muscle zones in giant hybrid sturgeon[J]. Food Research and Development,2020,41(18):162−168. [14] ZHANG Y Q, MA X T, DAI Z Y. Comparison of nonvolatile and volatile compounds in raw, cooked, and canned yellowfin tuna (Thunnus albacores)[J]. Journal of Food Processing and Preservation,2019,43(10):1−11.
[15] 张红燕, 李晔, 袁贝, 等. 金枪鱼油冬化前后脂肪酸含量和主体风味的解析[J]. 核农学报,2017,31(2):314−324. [ZHANG H Y, LI Y, YUAN B, et al. Fatty acid content and main flavor analysis of tuna oil before and after winterization[J]. Journal of Nuclear Agricultural Sciences,2017,31(2):314−324. doi: 10.11869/j.issn.100-8551.2017.02.0314 [16] ZHAO J X, JIANG Q X, XU Y S, et al. Effect of mixed kojis on physiochemical and sensory properties of rapid-fermented fish sauce made with freshwater fish by-products[J]. International Journal of Food Science and Technology,2017,52(9):2088−2096. doi: 10.1111/ijfs.13487
[17] ZENG X F, XIA W S, JIANG Q X, et al. Contribution of mixed starter cultures to flavor profile of suanyu-a traditional Chinese low-salt fermented whole fish[J]. Journal of Food Processing and Preservation,2017,41(5):1−15.
[18] HU M Y, WANG S Y, LIU Q, et al. Flavor profile of dried shrimp at different processing stages[J]. LWT-Food Science and Technology,2021(38):111403.
[19] NARVAEZ-RIVAS M, GALLARDO E, LEON-CAMACHO M. Chemical changes in volatile aldehydes and ketones from subcutaneous fat during ripening of Iberian dry-cured ham. prediction of the curing time[J]. Food Research International,2014,55:381−390. doi: 10.1016/j.foodres.2013.11.029
[20] 王悦齐, 李春生, 李来好, 等. 基于GC-MS联用技术分析传统鱼露发酵过程中挥发性风味成分和脂肪酸组分变化[J]. 水产学报,2018,42(6):984−995. [WANG Y Q, LI C S, LI L H, et al. Analysis of volatile flavor components and fatty acids in fish sauces during fermentation by GC-MS[J]. Journal of Fisheries of China,2018,42(6):984−995. [21] 卢春霞, 翁丽萍, 王宏海, 等. 3 种网箱养殖鱼类的主体风味成分分析[J]. 食品与发酵工业,2010,36(10):163−169. [LU C X, WENG L P, WANG H H, et al. Investigation on the key odor compounds of three cage-farming fishes[J]. Food and Fermentation Industries,2010,36(10):163−169. [22] 张晶晶, 王锡昌, 施文正. 白姑鱼和小黄鱼肉中挥发性风味物质的鉴定[J]. 食品科学,2019,40(14):206−213. [ZHANG J J, WANG X C, SHI W Z. Identification of volatile compounds in white croaker and small yellow croaker[J]. Food Science,2019,40(14):206−213. doi: 10.7506/spkx1002-6630-20180901-001 [23] CHUNG H Y, YUNG I K S, MA W C J, et al. Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography-mass spectrometry[J]. Food Research International,2002,35(1):43−53. doi: 10.1016/S0963-9969(01)00107-7
[24] 王霞, 黄健, 侯云丹, 等. 电子鼻结合气相色谱-质谱联用技术分析黄鳍金枪鱼肉的挥发性成分[J]. 食品科学,2012,33(12):268−272. [WANG X, HUANG J, HOU Y D, et al. Analysis of volatile components in yellowfin tuna by electronic nose and GC-MS[J]. Food Science,2012,33(12):268−272. [25] 赵洪雷, 尹一鸣, 陈义莹, 等. 不同产地虾酱风味特征及差异分析[J]. 食品与发酵工业,2019(10):194−200. [ZHAO H L, YIN Y M, CHEN Y Y, et al. Flavor characteristics of shrimp pastes from different regions and variance analysis[J]. Food and Fermentation Industries,2019(10):194−200. doi: 10.13995/j.cnki.11-1802/ts.019071 [26] ZHANG M N, LIU L Q, SONG G S, et al. Analysis of volatile compound change in tuna oil during storage using a laser irradiation based HS-SPME-GC/MS[J]. LWT,2020,108:21−30.
[27] WU N, GU S Q, TAO N P, et al. Characterization of important odorants in steamed male Chinese mitten crab (erioc food heir sinensis) using gas chromatography-mass spectrometry-olfactometry[J]. Journal of Science, 2014, 79(7): C1250-C1252.
[28] 胡梦月, 王善宇, 薛勇, 等. 即食虾干加工过程风味变化[J]. 中国渔业质量与标准,2020,10(6):10−16. [HU M Y, WANG S Y, XUE Y, et al. Changes in flavor characteristics of dried shrimps during processing[J]. Chinese Fishery Quality and Standards,2020,10(6):10−16. doi: 10.3969/j.issn.2095-1833.2020.06.002 [29] 顾赛麒, 唐锦晶, 周绪霞, 等. 腌腊鱼传统日晒干制过程中品质变化与香气形成[J]. 食品科学,2019,40(17):36−44. [GU S Q, TANG J J, ZHOU X X, et al. Quality change and aroma formation in cured fish during traditional sun drying processing[J]. Food Science,2019,40(17):36−44. doi: 10.7506/spkx1002-6630-20180716-201 [30] LAURA P S, REBECA M, CARMELA B, MONICA F. Nitrate reduction in the fermentation process of salt reduced dry sausages: Impact on microbial and physicochemical parameters and aroma profile[J]. International Journal of Food Microbiol,2018,282(1):84−91.
[31] 刘智禹. 干海带中挥发性风味成分的分析与鉴定[J]. 农学学报,2011,1(4):43−47. [LIU Z Y. Analysis and evaluation of the volatile flavor compounds in dried kelp[J]. Journal of Agriculture,2011,1(4):43−47. doi: 10.3969/j.issn.1007-7774.2011.04.009 [32] 刘昌华, 王艳, 章建浩, 等. 固相微萃取-气质联用法测定鲈鱼风干成熟工艺过程中的挥发性化合物变化[J]. 食品科学,2013,34(10):250−254. [LIU C H, WANG Y, ZHANG J H, et al. Changes in volatile compounds of ferch during curing-drying/ripeningprocess[J]. Food Science,2013,34(10):250−254. doi: 10.7506/spkx1002-6630-201310055 [33] 田迪英, 焦慧, 陶崴, 等. 5种海鱼挥发性风味成分分析[J]. 食品与发酵工业,2015,41(10):155−159. [TIAN D Y, JIAO H, TAO W, et al. Analysis of volatile flavor components of five kinds of marine fish[J]. Food and Fermentation Industries,2015,41(10):155−159. doi: 10.13995/j.cnki.11-1802/ts.201510029 [34] 李晓朋, 曾欢, 林柳, 等. 不同煎炸用油制备河豚鱼汤挥发性风味成分的差异性[J]. 食品与发酵工业,2021,47(7):251−259. [LI X P, ZENG H, LIN L, et al. Volatile compounds of puffer fish soup prepared with different frying oils[J]. Food and Fermentation Industries,2021,47(7):251−259. doi: 10.13995/j.cnki.11-1802/ts.025582 [35] 顾赛麒, 陶宁萍, 吴娜, 等. 一种基于ROAV值鉴别蟹类关键特征性风味物的方法[J]. 食品工业科技,2012,33(13):410−416. [GU S Q, TAO N P, WU N, et al. A new method based on ROAV value to identify the characteristic key volatile compounds of crab flavor[J]. Science and Technology of Food Industry,2012,33(13):410−416. doi: 10.13386/j.issn1002-0306.2012.13.051 [36] CALKINS C R, HODGEN J M. A fresh look at meat flavor[J]. Meat Science,2007,77(1):63−80. doi: 10.1016/j.meatsci.2007.04.016
[37] 姚文生, 蔡莹暄, 刘登勇, 等. 不同材料熏制鸡腿肉挥发性物质GC-IMS指纹图谱分析[J]. 食品科学技术学报,2019,37(6):37−45. [YAO W S, CAI Y X, LIU D Y, et al. Volatile compounds analysis in chicken thigh smoked with different materials by GC- IMS fingerprint[J]. Journal of Food Science and Technology,2019,37(6):37−45. doi: 10.3969/j.issn.2095-6002.2019.06.006