• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

食用木薯块根冻结特性及代谢产物分析

林立铭, 王琴飞, 余厚美, 徐缓, 张振文

林立铭,王琴飞,余厚美,等. 食用木薯块根冻结特性及代谢产物分析[J]. 食品工业科技,2022,43(15):1−8. doi: 10.13386/j.issn1002-0306.2021110205.
引用本文: 林立铭,王琴飞,余厚美,等. 食用木薯块根冻结特性及代谢产物分析[J]. 食品工业科技,2022,43(15):1−8. doi: 10.13386/j.issn1002-0306.2021110205.
LIN Liming, WANG Qinfei, YU Houmei, et al. Freezing Characteristics and Metabolite Analysis of Edible Cassava Root[J]. Science and Technology of Food Industry, 2022, 43(15): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110205.
Citation: LIN Liming, WANG Qinfei, YU Houmei, et al. Freezing Characteristics and Metabolite Analysis of Edible Cassava Root[J]. Science and Technology of Food Industry, 2022, 43(15): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110205.

食用木薯块根冻结特性及代谢产物分析

基金项目: 国家重点研发计划项目(2020YFD1001200);现代农业产业技术体系(CARS-11, CCARS-HNZZW)。
详细信息
    作者简介:

    林立铭(1986−),男,硕士,助理研究员,研究方向:农产品加工与贮藏,E-mail:liminglin2010@126.com

    通讯作者:

    张振文(1975−),男,博士,研究员,研究方向:农产品加工与贮藏,E-mail:scuta96@catas.cn

  • 中图分类号: S379.2

Freezing Characteristics and Metabolite Analysis of Edible Cassava Root

  • 摘要: 为了解木薯块根冻结特性及其代谢产物,以食用木薯品种“华南9号”为研究对象,通过电导率法测定块根头、中和尾3个部位的冻结变化规律及相关影响因素,结合非靶向代谢组学进行差异代谢物分析。结果表明:木薯块根不同部位冰点范围为−0.6至−1.1 ℃,但发生冻结的时间不一致;不同部位的可溶性固形物含量与淀粉含量最高值均出现在头部,分别为7.00%和26.84%,但各部位间的含量差异不显著(P>0.05),而含水量最高值出现在尾部,为64.07%;相关性结果分析发现,冰点与可溶性固形物、含水量呈负相关关系,与淀粉含量呈正相关关系。非靶向代谢组学分析发现,与对照相比冰温处理存在41个具有显著差异表达的代谢物,以苯丙氨酸代谢途径富集程度最高,共有9个显著差异代谢物。该途径中马尿酸-苯甲酸-水杨酸通路的马尿酸、苯甲酸表达上调,这可能与块根对低温应答响应有关。该研究结果可为今后木薯块根低温贮藏提供理论参考。
    Abstract: In order to understand the freezing characteristics and metabolites of cassava root, the edible cassava variety “South China 9” was taken as the research object, by measuring the freezing-law and related influencing factors at the head, middle and tail of cassava root, combined with non-targeted metabolomics to analyze the differential metabolite. The results showed that: The freezing temperature was from −0.6 to −1.1 ℃ in different parts of root, but the freezing time was different. The highest values of soluble solid content and starch content in different parts appeared in the head, which were 7.00% and 26.84% respectively, but there was no significant difference among different parts (P>0.05), while the highest value of water content appeared in the tail, which was 64.07%. Correlation analysis showed that freezing point was negatively correlated with soluble solids and water content, and positively correlated with starch content. Compared with control, 41 differential metabolites were screened under low treatment by the non-targeted metabolomics, and the enrichment degree of phenylalanine metabolic pathway was the highest, with a total of 9 significant differential metabolites. In this pathway, the expression of hippuric acid and benzoic acid was up-regulated, which might be related to the response of root tubers to low temperature. The results provide theoretical reference for low-temperature storage in the future.
  • 木薯(Manihot esculenta Crantz.)是重要的热带粮食作物,其块根收获时的机械损伤会使其在采后72 h内迅速腐烂。据报道[1],全球每年因采后腐烂而损失的可达到总产量的10%~30%,已成为制约木薯产业发展的重要因素。随着产业发展目标从“工业化”向“食用化”过渡转型,贮藏保鲜技术显得格外重要。冷冻贮藏(−20 ℃)是目前最常用且有效的保鲜方式,在广西南宁、广东化州等地广泛应用,但成本颇高,且极有可能造成风味流失[2]。冰温技术是指一种在冰点温度范围内贮藏果蔬等新鲜食品的贮藏技术,可最大程度地降低果品、生鲜等活体呼吸速率,从而抑制病原微生物滋生,进一步延长果品的贮藏期和保质期[3]。冰点是食品冷藏保鲜加工的重要热物性参数之一,果蔬冰点的确定对低温冷却、冻伤机理以及冷藏冷冻加工的研究具有重要意义[4-6]。然而,目前的研究工作主要围绕生理生化指标与贮藏效果等展开,关于保持其品质的影响机理鲜见报道,不利于冰温贮藏技术的广泛应用。

    有研究表明,果蔬冰点与可溶性固形物含量呈显著或极显著负相关水平[7-9],而林向东等[10]的研究结果表明,原料含水量不同,冰点也不相同。王丹等[11]通过研究桑葚冻结特性发现,个体差异、不同物态对冰点影响较大;与一般果蔬不同,高淀粉类果蔬的结晶释放较高潜热对冰点造成影响[12]。而有关冬枣冰点的研究显示,其冰点因果实成熟度、含糖量等不同而有所差异[13]。可见,关于物料冻结特性的研究不仅需要考虑内含物质的区别,同时还要兼顾物料表观特征。

    研究显示,木薯块根不同部位的营养成分存在极显著差异[14]。因此,本研究将通过测定食用木薯块根不同部位随温度下降电导率的变化情况,确定其冰点温度范围,了解冻结特性,分析块根含水量、可溶性固形物及淀粉含量与冰点的关系;利用非靶向代谢组学研究代谢产物的变化,为木薯块根低温储藏技术提供理论支撑,也为今后木薯食用化利用技术的开发奠定基础。

    食用木薯(指新鲜块根氢氰酸含量低于50 mg/kg的木薯品种):华南9号(South China 9, SC9) 中国热带农业科学院热带作物品种资源研究所,种植时间为10个月;二水合氯化钙、醋酸、硫酸锌、氯化亚铁、无水乙醇、亚铁氰化钾 国药集团化学试剂有限公司。

    CP213电子天平 中国奥豪斯仪器有限公司;HH-S6恒温水浴锅、XH-C旋涡混合器 金坛仪器厂;DAX-9053恒温干燥箱 上海福码公司;H3-18 KR台式高速冷冻离心机 湖南可成仪器设备有限公司;FE38电导率测试仪 上海右一仪器有限公司;PAL-1糖度计 上海安仪科学仪器有限公司;WZZ-2B旋光仪 上海精密仪器仪表公司;HS-S数显恒温油浴锅 常州隆和仪器制造有限公司;Q Exactive™ HF-X质谱仪、Vanquish UHPLC色谱仪、色谱柱Hypesil Gold column(100×2.1 mm, 1.9 μm) Thermo Fisher。

    鲜木薯块根收获后,随机选取无腐烂的薯块,洗净去皮。为充分研究块根营养成分对冻结参数的影响,参照魏艳等[14]的方法将整条薯从头部、中部和尾部横切取样(如图1),根据电导率仪两极孔隙大小分别将各部位切成长方体小块(长、宽、高约2.0 cm×1.0 cm×0.5 cm),以保证薯块与电极能够紧密接触,长方体小块用于冻结参数测定,其它样品置于烘箱中,60 ℃烘干后粉碎过80目筛,用于其它指标的测定。

    图  1  块根取样示意图
    Figure  1.  Sampling for cassava root

    参考宋丽荣等[15]的方法,将电导率测定仪探头置于蒸馏水中,打开仪器,预热5~10 min;将固态食品物料切成大小适宜的长方体嵌入电导率仪两极之间,使物料与之紧密接触,将电极探头置于−20 ℃的密闭冷冻环境中,每分钟记录1次温度值,待温度和电导率不再发生变化时可结束测定;将记录的温度值和对应的时间数据输入Excel表格中,以时间为横坐标,温度值为纵坐标,作出点线曲线图。

    采用GB 5009.3-2016 《食品中水分的测定》[16]

    采用NY/T 2637-2014 《水果、蔬菜可溶性固形物含量的测定 折射仪法》[17]

    采用GB/T 20378-2006 《原淀粉 淀粉含量的测定 旋光法》[18]

    样品处理:参考Kim等[19]的方法,块根洗净去皮,冰水浴处理1 h(经前期实验得出,块根冰水浴1 h时内部温度已达到冰温);然后随机称取250 mg样品,分装至2 mL离心管中,用锡箔纸包裹并标记后,放入液氮中冷冻处理至少15 min。取出后迅速放入自封袋中(每组一袋),在自封袋中放入标签纸标明样本信息后迅速放入−80 ℃冰箱冻存待测,标记为C60。以未经冰水浴处理的样品为对照,标记为C0。

    代谢物提取:参考Want等[20]的方法,取100 mg液氮研磨的组织样本,置于EP管中,加入500 μL含0.1%甲酸的80%甲醇水溶液,涡旋振荡,冰浴静置5 min,15000 r/min、4 ℃离心10 min,取一定量的上清加质谱级水稀释至甲醇含量为53%,并置于离心管中15000 r/min、4 ℃离心10 min,收集上清,进样LC-MS进行分析。

    质控(QC)样本:从每个实验样本中取等体积样本混匀作为QC样本。

    空白(blank)样本:含0.1%甲酸的53%甲醇水溶液代替实验样本,前处理过程与实验样本相同。

    色谱条件:色谱柱:Hypesil Gold column(C18);柱温:40 ℃;流速:0.2 mL/min;进样量:100 μL;扫描范围选择m/z 70~1050;正模式:流动相A:0.1%甲酸,流动相;B:甲醇;负模式:流动相A:5 mmol/L 醋酸铵,pH9.0;流动相 B:甲醇。

    实验操作均重复3次,结果以平均值±SD表示。利用Excel 2010制作图表,显著性和相关性分析采用SAS 8.1进行分析。方差分析中P<0.05表示差异具有显著统计学意义。通过KEGG PATHWAY数据库(https://www.genome.jp/kegg/pathway.html)、HMDB数据库(https://hmdb.ca/metabolites)、LIPID MAPS数据库(http://www.lipidmaps.org)对鉴定到的代谢物进行注释。

    一般地,物料的冻结过程可分为三个阶段:冷却阶段-冰晶生成阶段-继续冻结阶段[21]。本研究发现,SC9块根冻结过程表现为冻结温度随时间的延长不断下降,直到到达某一温度时,温度变化曲线逐渐平缓,呈现相对稳定状态,其过冷点与冰点重合,此时的温度即为块根的冰点;如图2所示,头部、中部表现为冰点与过冷点重合,温度分别为−0.6、−1.0、−1.1 ℃;不同部位发生冻结的时间并不一致,这可能与其内含物成分及比例不同,细胞组织对冻结过程的阻碍作用相关,对于冻结特性的影响仍有待深入研究[11]

    图  2  块根不同部位冻结曲线
    注:a、b、c分别为块根头部、中部、尾部。
    Figure  2.  The freezing curve type of different parts of cassava root

    物料低温冻结主要是由其本身水分冷却凝固造成的,含水量在一定程度上影响物料的冻结特性。果蔬细胞内部TSS主要包含糖、有机酸、盐、果胶、多元醇等,其含量高低反映细胞生理生化特性,且与品质密切相关[22]。淀粉是木薯块根干物质含量占比最大的一种营养成分,因吸水性强,其含量高低影响了块根中可冻结水分的含量。表1结果显示,不同部位成分差异比较发现,除含水量头部与中部、尾部呈极显著差异外(P<0.01),可溶性固形物及淀粉含量均无显著差异(P>0.05);块根含水量表现出头部<中部<尾部的规律,亦可说明干物质含量规律应为头部>中部>尾部,而可溶性固形物与淀粉含量同样表现出类似规律,这与前人研究木薯的结果一致[14]。甘蔗不同部位含糖量的规律与该结果相近[23-24],原因可能与运输蛋白、相关酶活、跨膜运输等有关,需进行进一步验证。

    表  1  块根不同部位成分差异比较
    Table  1.  Comparison of components for different parts of cassava roots
    成分(%)头部中部尾部
    含水量60.97±0.65B63.33±0.50A64.07±0.42A
    可溶性固形物7.00±0.10a6.90±0.20a6.53±0.15a
    淀粉含量26.84±0.44a26.42±0.12a26.47±0.54a
    注:同行不同小写字母表示差异显著(P<0.05);同行不同大写字母表示差异极显著(P<0.01)。
    下载: 导出CSV 
    | 显示表格

    表2可看出,可溶性固形物和含水量呈极显著负相关(P<0.01),冰点温度(Freezing Temperature,FT)则与可溶性固形物、含水量呈负相关关系,与淀粉含量呈正相关关系。即可溶性固形物、含水量越高,则冰点温度越低,但相关性不显著(P>0.05),这可能与淀粉类果蔬冰点受细胞内冰晶结晶速率的影响,造成可溶性固形物含量发生变化有关[12]

    表  2  冰点影响因素相关分析
    Table  2.  Effects of relative analysis for freezing temperature
    可溶性固形物含水量淀粉含量冰点温度
    可溶性固形物1
    含水量−0.80314**1
    淀粉含量−0.01079−0.228331
    冰点温度−0.22729−0.223720.64181
    注:“**”表示相关性达极显著水平(P<0.01)。
    下载: 导出CSV 
    | 显示表格

    偏最小二乘法判别分析(partial least squares discrimination analysis, PLS-DA)是一种有监督的判别分析统计方法,通过运用偏最小二乘回归建立代谢物表达量与样品类别之间的关系模型,来实现对样品类别的预测[25]。初步的模型构建验证发现,R2数据大于Q2数据,且Q2回归线与Y轴截距小于0时,表明模型未“过拟合”(图3)模型稳定可靠。

    图  3  两种离子模式下的PLS-DA得分图及验证图
    注:数字1~6分别为对照样本生物学重复名称,7~12为处理样本生物学重复名称;A、B分别为正、负离子模式。
    Figure  3.  PLS-DA score diagram and valid diagram under two ion modes

    通过KEGG、HMDB、LIPID MAPS等数据库对代谢物进行功能和分类注释,其中,差异代谢物的筛选主要参考VIP、FC和P值三个参数,VIP是指PLS-DA模型第一主成分的变量投影重要度(Variable Importance in the Projection)[26],VIP值表示代谢物对分组的贡献;FC指差异倍数(Fold Change),为每个代谢物在比较组中所有生物重复定量值的均值的比值;P值是通过T-test计算得到[27],表示差异显著性水平。设定阈值为VIP>1.0,FC>1.2或FC<0.833且P<0.05[26,28-29],共筛选出41个显著差异代谢物,包括3种脂肪酸和共轭物、1种羟基肉桂酸及其衍生物、2种苯甲酸及其衍生物、1种喹啉羧酸、6种氨基酸、肽和类似物、胆汁酸、醇和衍生物、1种黄酮苷、1种嘧啶核苷酸、1种酮类、1种黄酮类、1种吡啶羧酸及其衍生物、1种线性二芳基庚烷以及22种未识别物质,其中,31个表达上调,10个表达下调。结果见表3

    表  3  冰温处理与常温对照的差异代谢物
    Table  3.  Differential metabolites between ice temperature treatment and normal temperature control
    序号名称化学式PROCVIPUp/
    down
    1Dihexylamine二己胺C12H27N0.00112112.399198
    2Decanoic acid癸酸C10H20O20.0022510.9722222.28682
    3(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol (2R,3S,4S,5R,6R)2-(羟甲基)-6-(2-苯乙氧基)氧烷-3,4,5-三醇C14H20O60.00256412.310237
    44-Coumaric acid 4-香豆酸C9H8O30.00581812.158125
    5ethyl2-methyl-1,5-diphenyl-1H-pyrrole-3-carboxylate 2-甲基-1,5-二苯基-1H-吡咯-3-羧酸乙酯C20H19NO20.0084750.8611112.079473
    6Hippuric Acid马尿酸C9H9NO30.0087850.9722222.093368
    72,3,4,9-Tetrahydro-1H-β-carboline-3-carboxylic acid 2,3,4,9-四氢-1H-β-卡波林-3-羧酸C12H12N2O20.0091270.8888892.042372
    8Xanthurenic acid黄脲酸C10H7NO40.0116670.9444442.036992
    9Azelaic acid壬二酸C9H16O40.0133630.9444442.043326
    105-Oxoproline 5-恶丙啉C5H7NO30.0135380.9444442.122606
    11(12Z)-9,10,11-trihydroxyoctadec-12-enoic acid (12Z)-9,10,11-三羟基十八碳-12-烯酸C18H34O50.0219750.8888891.891101
    12(11E,15Z)-9,10,13-trihydroxyoctadeca-11,15-dienoic acid (11E,15Z)-9,10,13-三羟基十八碳-11,15-二烯酸C18H32O50.0228020.9166671.912454
    13L-Aspartic acid L-天门冬氨酸C4H7NO40.0241270.8611111.864644
    146,7-Dimethoxy-2-oxo-2H-chromen-8-yl β-D-glucopyranoside 6,7-二甲氧基-2-氧基-2H-铬-8-基β-D-吡喃葡萄糖苷C17H20O100.0253780.8611111.823265
    15Valeric Acid戊酸C5H10O20.0257770.9444442.051199
    162-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-6-methyl-4H-chromen-4-one 2-(3,4-二羟基苯基)-3,5,7-三羟基-6-甲基-4H-铬-4-酮C16H12O70.0260040.8888891.816155
    17N6,N6,N6-Trimethyl-L-lysine N6,N6,N6-三甲基-L-赖氨酸C9H20N2O20.0260490.8333331.930167
    18Deoxycholic acid脱氧胆酸C24H40O40.0260870.8611111.951633
    192-(2-hydroxy-3-methylbutanamido)-4-methylpentanoic acid 2-(2-羟基-3-甲基丁胺基)-4-甲基戊酸C11H21NO40.0264290.8888891.832908
    20LPE 18:3C23 H42NO7P0.0265060.8333331.989631
    21Viscumamide槲寄生酰胺C30H55N5O50.0277310.8888891.958203
    225-Methyluridine 5-甲基尿苷C10H14N2O60.02810.9166671.980486
    23Dodecanedioic Aicd十二烷二酸C12H22O40.0287970.9166671.88303
    24Argininosuccinic acid精氨琥珀酸C10H18N4O60.0293370.8333331.874336
    25Phe-Pro苯丙氨酸-脯氨酸C14H18N2O30.0295170.8611111.801609
    262-(acetylamino)-3-[4-(acetylamino)phenyl]acrylic acid 2-(乙酰氨基)-3-[4-(乙酰氨基)苯基]丙烯酸C13H14N2O40.031580.8611111.791158
    27Hesperetin 5-O-glucoside橙皮素5-O-葡萄糖苷C22H24O110.037850.8333331.907904
    28gamma-Glu-Leu γ-谷氨酸-亮氨酸C11H20N2O50.0388720.8611111.735533
    29Benzoic acid苯甲酸C7H6O20.0389530.8888891.802102
    302-[5-(2-hydroxypropyl)oxolan-2-yl]propanoic acid 2-[5-(2-羟丙基)恶唑烷-2-基]丙酸C10H18O40.039150.8611111.831315
    31Cysteinylglycine半胱氨酸甘氨酸C5H10N2O3S0.0393450.8333331.705278
    32Cytidine 5'-diphosphate胞苷5'-二磷酸C9H14N3NaO10P20.0395540.8888891.701048
    33Isophorone异佛尔酮C9H14O0.0398910.8611111.792245
    34(3R)-4,4-Dimethyl-2-oxotetrahydro-3-furanyl beta-D-glucopyranoside (3R)-4,4-二甲基-2-氧代四氢-3-呋喃基β-D-吡喃葡萄糖苷C12H20O80.0416980.8055561.871978
    35Kaempferol山奈酚C15H10O60.0427480.8611111.726868
    368-methylretusin-7-O-beta-D-glucopyranoside 8-甲基瑞汀-7-O-β-D-吡喃葡萄糖苷C24H26O120.0438450.8888891.776781
    37Nicotinamide-N-oxide烟酰胺-N-氧化物C6H6N2O20.0453860.8333331.758254
    38Coumarin香豆素C9H6O20.0462190.8333331.761383
    391,7-bis(4-hydroxyphenyl)-5-methoxyheptan-3-one 1,7-双(4-羟基苯基)-5-甲氧基庚烷-3-酮C20H24O40.0470740.8055561.737262
    40Decursinol癸醇C14H14O40.0474560.9166671.729854
    41YQHC20H26N6O60.0498770.9444441.679336
    下载: 导出CSV 
    | 显示表格

    将筛选出的41个组间差异代谢物通过KEGG富集通路分析,绘制出主要的生化代谢和信号转导途径富集气泡图(图4)。从图4可以看出,P<0.05的代谢途径有3条,分别是苯丙氨酸代谢通路(Phenylalanine metabolism)、脂肪酸生物合成(Fatty acid biosynthesis)和光合固碳作用(Carbon fixation in photosynthetic organisms)。其中,苯丙氨酸代谢通路的气泡最大,表示该通路中差异代谢物富集程度最高。说明经冰温处理后块根苯丙氨酸通路中差异代谢物数目最多。通过ROC曲线,可以看出,其差异代谢物ROC曲线下方的面积(AUC)在0.9以上(图5),表明该结果具有较高的准确性。

    图  4  KEGG富集气泡图
    Figure  4.  KEGG enrichment scatterplot
    图  5  差异代谢物ROC曲线图
    Figure  5.  ROC curve of differential metabolites

    与对照相比,冰温处理下的苯丙氨酸代谢通路如图6所示,(圆圈代表代谢物,其中绿色实心圆圈标记为注释到的代谢物,红色圆圈标记为上调差异代谢物),通路中共有9个显著差异代谢物,其中,作为水杨酸前体的马尿酸(Hippuric Acid,HA)和苯甲酸(Benzoic acid,BA)两种产物表达上调,这可能是导致冰点温度贮藏保鲜效果显著的主要原因。

    图  6  苯丙氨酸代谢通路
    Figure  6.  Phenylalanine metabolism pathway

    果蔬在冻结过程中,细胞汁液逐渐发生形态改变(液态-固态),当温度持续下降至第一个最低点时,即为过冷点;随后,细胞通过释放潜热,温度会出现小幅上升,达到某一高点,即为冻结点,此时零度与冻结点之间的温度范围称为冰温带[30]。冰温贮藏保鲜是一种将物料置于冰温带中的非冻结保鲜技术,其本质是利用细胞液内蛋白质、氨基酸等物质形成的一定空间网络结构,能阻碍冰晶生成,保持细胞的完整性,且在该温度带内呼吸速率大大降低、酶及微生物极大程度受到抑制,相对于常温储藏,可使果品延长2~10倍的贮藏期[3,31]

    目前,关于木薯块根保鲜技术的研究匮乏,而多采用耗能和成本颇高的冻藏方式进行贮藏(−20 ℃)。因此,开展冰温贮藏利用及基因表达情况、代谢产物的差异性分析等研究将为转变木薯块根贮藏方式提供可靠依据和有力支撑。王二欢等[32]认为,关玉竹不同部位冰点与水分含量关系有所差异,推测冰点不仅与水分含量及组成有关,而且与植物组织内成核剂(细菌性和非细菌性)、遗传有一定关系,这可能是冰点与其水分组成之间相关性发生改变的原因;本试验发现,木薯块根的冰点温度与可溶性固形物、含水量,淀粉含量分别呈负、正相关关系,但都不显著,虽然与前人研究结果有出入,一方面这与木薯块根含有大量淀粉颗粒,在冷冻前期冻结速率较低时,细胞内微细物质会影响冰晶生长。随着温度逐步降低,细胞内结晶会释放潜热,影响细胞冻结温度,阻碍冰晶的形成[11];另一方面木薯作为典型菌根作物,内含微生物类型丰富,使得冻结过程组织内成核,从而造成冰点有所差异有关。

    水杨酸(salicylic acid,SA)是植物中普遍存在的一种小分子酚类物质,已有研究人员发现SA在植物应对高低温、盐、重金属等非生物胁迫方面扮演着重要角色[33-34],尤其是在ROS清除[35],缓解细胞脱水[36]及与其他信号分子间相互作用[37]等机体响应低温胁迫的生理机理作用已得到证实。经过科学家多年研究,低温可促进植物组织中水杨酸的合成已取得共识,其来源途径主要分为苯丙氨酸解氨酶(phenylalanine ammonia-lyase, PAL)途径和异分支酸合成酶(isochorismate synthase, ICS)途径,可能与物种、低温处理时间及强度等因素有关[38]。本研究发现,通过冰温处理后块根的非靶向代谢组学分析,与对照相比,块根主要的差异代谢反映在苯丙氨酸代谢通路上,该通路共注释到9个具有显著差异的代谢物,水杨酸的前体物质马尿酸与苯甲酸二者表达上调,推测水杨酸的差异表达是块根冰温贮藏具有良好保鲜效果的关键,这与张秋明等[39]研究柑桔内源水杨酸含量变化对耐贮性影响的结论类似。

    综上所述,食用木薯块根冰点为−0.6~−1.0℃,通过冰点影响因素结合代谢组学分析,实际贮藏温度建议控制在(−1.0±1)℃间,既能降低低温贮藏成本,也能有效避免温度过低而造成冷害发生。

  • 图  1   块根取样示意图

    Figure  1.   Sampling for cassava root

    图  2   块根不同部位冻结曲线

    注:a、b、c分别为块根头部、中部、尾部。

    Figure  2.   The freezing curve type of different parts of cassava root

    图  3   两种离子模式下的PLS-DA得分图及验证图

    注:数字1~6分别为对照样本生物学重复名称,7~12为处理样本生物学重复名称;A、B分别为正、负离子模式。

    Figure  3.   PLS-DA score diagram and valid diagram under two ion modes

    图  4   KEGG富集气泡图

    Figure  4.   KEGG enrichment scatterplot

    图  5   差异代谢物ROC曲线图

    Figure  5.   ROC curve of differential metabolites

    图  6   苯丙氨酸代谢通路

    Figure  6.   Phenylalanine metabolism pathway

    表  1   块根不同部位成分差异比较

    Table  1   Comparison of components for different parts of cassava roots

    成分(%)头部中部尾部
    含水量60.97±0.65B63.33±0.50A64.07±0.42A
    可溶性固形物7.00±0.10a6.90±0.20a6.53±0.15a
    淀粉含量26.84±0.44a26.42±0.12a26.47±0.54a
    注:同行不同小写字母表示差异显著(P<0.05);同行不同大写字母表示差异极显著(P<0.01)。
    下载: 导出CSV

    表  2   冰点影响因素相关分析

    Table  2   Effects of relative analysis for freezing temperature

    可溶性固形物含水量淀粉含量冰点温度
    可溶性固形物1
    含水量−0.80314**1
    淀粉含量−0.01079−0.228331
    冰点温度−0.22729−0.223720.64181
    注:“**”表示相关性达极显著水平(P<0.01)。
    下载: 导出CSV

    表  3   冰温处理与常温对照的差异代谢物

    Table  3   Differential metabolites between ice temperature treatment and normal temperature control

    序号名称化学式PROCVIPUp/
    down
    1Dihexylamine二己胺C12H27N0.00112112.399198
    2Decanoic acid癸酸C10H20O20.0022510.9722222.28682
    3(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol (2R,3S,4S,5R,6R)2-(羟甲基)-6-(2-苯乙氧基)氧烷-3,4,5-三醇C14H20O60.00256412.310237
    44-Coumaric acid 4-香豆酸C9H8O30.00581812.158125
    5ethyl2-methyl-1,5-diphenyl-1H-pyrrole-3-carboxylate 2-甲基-1,5-二苯基-1H-吡咯-3-羧酸乙酯C20H19NO20.0084750.8611112.079473
    6Hippuric Acid马尿酸C9H9NO30.0087850.9722222.093368
    72,3,4,9-Tetrahydro-1H-β-carboline-3-carboxylic acid 2,3,4,9-四氢-1H-β-卡波林-3-羧酸C12H12N2O20.0091270.8888892.042372
    8Xanthurenic acid黄脲酸C10H7NO40.0116670.9444442.036992
    9Azelaic acid壬二酸C9H16O40.0133630.9444442.043326
    105-Oxoproline 5-恶丙啉C5H7NO30.0135380.9444442.122606
    11(12Z)-9,10,11-trihydroxyoctadec-12-enoic acid (12Z)-9,10,11-三羟基十八碳-12-烯酸C18H34O50.0219750.8888891.891101
    12(11E,15Z)-9,10,13-trihydroxyoctadeca-11,15-dienoic acid (11E,15Z)-9,10,13-三羟基十八碳-11,15-二烯酸C18H32O50.0228020.9166671.912454
    13L-Aspartic acid L-天门冬氨酸C4H7NO40.0241270.8611111.864644
    146,7-Dimethoxy-2-oxo-2H-chromen-8-yl β-D-glucopyranoside 6,7-二甲氧基-2-氧基-2H-铬-8-基β-D-吡喃葡萄糖苷C17H20O100.0253780.8611111.823265
    15Valeric Acid戊酸C5H10O20.0257770.9444442.051199
    162-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-6-methyl-4H-chromen-4-one 2-(3,4-二羟基苯基)-3,5,7-三羟基-6-甲基-4H-铬-4-酮C16H12O70.0260040.8888891.816155
    17N6,N6,N6-Trimethyl-L-lysine N6,N6,N6-三甲基-L-赖氨酸C9H20N2O20.0260490.8333331.930167
    18Deoxycholic acid脱氧胆酸C24H40O40.0260870.8611111.951633
    192-(2-hydroxy-3-methylbutanamido)-4-methylpentanoic acid 2-(2-羟基-3-甲基丁胺基)-4-甲基戊酸C11H21NO40.0264290.8888891.832908
    20LPE 18:3C23 H42NO7P0.0265060.8333331.989631
    21Viscumamide槲寄生酰胺C30H55N5O50.0277310.8888891.958203
    225-Methyluridine 5-甲基尿苷C10H14N2O60.02810.9166671.980486
    23Dodecanedioic Aicd十二烷二酸C12H22O40.0287970.9166671.88303
    24Argininosuccinic acid精氨琥珀酸C10H18N4O60.0293370.8333331.874336
    25Phe-Pro苯丙氨酸-脯氨酸C14H18N2O30.0295170.8611111.801609
    262-(acetylamino)-3-[4-(acetylamino)phenyl]acrylic acid 2-(乙酰氨基)-3-[4-(乙酰氨基)苯基]丙烯酸C13H14N2O40.031580.8611111.791158
    27Hesperetin 5-O-glucoside橙皮素5-O-葡萄糖苷C22H24O110.037850.8333331.907904
    28gamma-Glu-Leu γ-谷氨酸-亮氨酸C11H20N2O50.0388720.8611111.735533
    29Benzoic acid苯甲酸C7H6O20.0389530.8888891.802102
    302-[5-(2-hydroxypropyl)oxolan-2-yl]propanoic acid 2-[5-(2-羟丙基)恶唑烷-2-基]丙酸C10H18O40.039150.8611111.831315
    31Cysteinylglycine半胱氨酸甘氨酸C5H10N2O3S0.0393450.8333331.705278
    32Cytidine 5'-diphosphate胞苷5'-二磷酸C9H14N3NaO10P20.0395540.8888891.701048
    33Isophorone异佛尔酮C9H14O0.0398910.8611111.792245
    34(3R)-4,4-Dimethyl-2-oxotetrahydro-3-furanyl beta-D-glucopyranoside (3R)-4,4-二甲基-2-氧代四氢-3-呋喃基β-D-吡喃葡萄糖苷C12H20O80.0416980.8055561.871978
    35Kaempferol山奈酚C15H10O60.0427480.8611111.726868
    368-methylretusin-7-O-beta-D-glucopyranoside 8-甲基瑞汀-7-O-β-D-吡喃葡萄糖苷C24H26O120.0438450.8888891.776781
    37Nicotinamide-N-oxide烟酰胺-N-氧化物C6H6N2O20.0453860.8333331.758254
    38Coumarin香豆素C9H6O20.0462190.8333331.761383
    391,7-bis(4-hydroxyphenyl)-5-methoxyheptan-3-one 1,7-双(4-羟基苯基)-5-甲氧基庚烷-3-酮C20H24O40.0470740.8055561.737262
    40Decursinol癸醇C14H14O40.0474560.9166671.729854
    41YQHC20H26N6O60.0498770.9444441.679336
    下载: 导出CSV
  • [1]

    IHEMERE U, ARIAS-GARZON D, LAWRENCE S, et al. Genetic modification of cassava for enhanced starch production[J]. Plant Biotechnology Journal,2006,4(4):453−465. doi: 10.1111/j.1467-7652.2006.00195.x

    [2] 王绍帆, 黄欢, 索慧敏, 等. 冷冻贮藏对马铃薯泥香气成分的影响[J]. 食品研究与开发,2020,41(16):45−50. [WANG S F, HUANG H, SUO H M, et al. Effects of frozen storage on aroma components of potato purse[J]. Food Research and Development,2020,41(16):45−50. doi: 10.12161/j.issn.1005-6521.2020.16.007

    WANG S F, HUANG H, SUO H M, et al. Effects of frozen storage on aroma components of potato purse[J]. Food Research and Development, 2020, 41(16): 45-50. doi: 10.12161/j.issn.1005-6521.2020.16.007

    [3] 孙晶, 康怀彬. 食品冰温贮藏技术的研究进展[J]. 农产品加工,2019,22:82−86. [SUN J, KANG H B. Research progress of food ice-temperature storage technology[J]. Farm Products Processing,2019,22:82−86.

    SUN J, KANG H B. Research progress of food ice-temperature storage technology[J]. Farm Products Processing, 2019, 22: 82-86.

    [4] 林晓姿, 黄飞, 何志刚, 等. 基于冰点测定的3种福建主栽蔬菜贮藏技术研究[J]. 福建农业学报,2015,30(5):516−521. [LIN X Z, HUANG F, HE Z G, et al. Study on the storage technology for three main vegetable varieties in Fujian based on freezing point measurement[J]. Fujian Journal of Agricultural Sciences,2015,30(5):516−521. doi: 10.3969/j.issn.1008-0384.2015.05.018

    LIN X Z, HUANG F, HE Z G, et al. Study on the storage technology for three main vegetable varieties in Fujian based on freezing point measurement[J]. Fujian Journal of Agricultural Sciences, 2015, 30(5): 516-521. doi: 10.3969/j.issn.1008-0384.2015.05.018

    [5] 杨洪钦, 谢树森. 生物组织热传递的物理基础[J]. 福建师范大学学报,2001(1):40−44. [YANG H Q, XIE S S. A physical basis for biological heat transfer[J]. Journal of Fujian Normal University (Natural Science Edition),2001(1):40−44.

    YANG H Q, XIE S S. A physical basis for biological heat transfer[J]. Journal of Fujian Normal University (Natural Science Edition), 2001, 1: 40-44.

    [6] 谢晶. 食品冷冻冷藏原理与技术[M]. 北京: 化学工业出版社, 2005.

    XIE J. Principle and technology of food refrigeration[M]. Beijing: Chemical Industry Press, 2005.

    [7] 张辉玲, 胡位荣, 庞学群, 等. 冰温与SO2缓释剂对龙眼贮藏的影响[J]. 园艺学报,2006,33(6):1325−1328. [ZHANG H L, HU W R, PANG X Q, et al. Effect of ice temperature technique and SO2 releaser on storage of Longan fruits[J]. Acta Horticulturae Sinica,2006,33(6):1325−1328. doi: 10.3321/j.issn:0513-353X.2006.06.031

    ZHANG H L, HU W R, PANG X Q, et al. Effect of ice temperature technique and SO2 releaser on storage of Longan fruits[J]. Acta Horticulturae Sinica, 2006, 33(6): 1325-1328. doi: 10.3321/j.issn:0513-353X.2006.06.031

    [8] 胡位荣, 张昭其, 蒋跃明, 等. 采后荔枝冰温贮藏的适宜参数研究[J]. 中国农业科学,2005,38(4):797−802. [HU W R, ZHANG Z Q, JIANG Y M, et al. Study on the parameter of ice-temperature storage in Litchi (Litchi chinensis Sonn.)[J]. Scientia Agricultura Sincia,2005,38(4):797−802. doi: 10.3321/j.issn:0578-1752.2005.04.024

    HU W R, ZHANG Z Q, JIANG Y M, et al. Study on the parameter of ice-temperature storage in Litchi (Litchi chinensis Sonn. )[J]. Scientia Agricultura Sincia, 2005, 38(4): 797-802. doi: 10.3321/j.issn:0578-1752.2005.04.024

    [9] 任杰, 张素丽, 冷平, 等. 不同处理对甜樱桃近生物冰点贮藏效果研究[J]. 中国农业大学学报,2009,14(2):75−80. [REN J, ZHANG S L, LENG P, et al. Effects of different treatments on controlled biological freezing-point storage of sweet cherries[J]. Journal of China Agricultural University,2009,14(2):75−80. doi: 10.3321/j.issn:1007-4333.2009.02.014

    REN J, ZHANG S L, LENG P, et al. Effects of different treatments on controlled biological freezing-point storage of sweet cherries[J]. Journal of China Agricultural University, 2009, 14(2): 75- 80. doi: 10.3321/j.issn:1007-4333.2009.02.014

    [10] 林向东, 张琪, 荆仕聪, 等. 用电导率法测定莲藕冻结点的研究[J]. 食品科学,2007,4:83−86. [LIN X D, ZHANG Q, JING S C, et al. Study on lotus root freezing point assay by electrical conductivity method[J]. Food Science,2007,4:83−86. doi: 10.3321/j.issn:1002-6630.2007.04.015

    LIN X D, ZHANG Q, JIN S C, et al. Study on lotus root freezing point assay by electrical conductivity method[J]. Food Science, 2007, 4: 83-86. doi: 10.3321/j.issn:1002-6630.2007.04.015

    [11] 王丹, 辛力, 孙蕾, 等. 桑葚的冻结特性及相关影响因素分析[J]. 天津农业科学,2017,23(9):7−10. [WANG D, XIN L, SUN L, et al. Study on the freezing property of mulberry and related influencing factors[J]. Tianjin Agricultural Sciences,2017,23(9):7−10. doi: 10.3969/j.issn.1006-6500.2017.09.002

    WANG D, XIN L, SUN L, et al. Study on the freezing property of mulberry and related influencing factors[J]. Tianjin Agricultural Sciences, 2017, 23(9): 7-10. doi: 10.3969/j.issn.1006-6500.2017.09.002

    [12] 张哲, 郎元路, 严雷, 等. 冻结速率对果蔬冰点的影响[J]. 海南师范大学学报,2020,33(4):433−440. [ZHANG Z, LANG Y L, YAN L, et al. Effect of cooling rate on freezing point of fruit and vegetables[J]. Journal of Hainan Normal University (Natural Science),2020,33(4):433−440.

    ZHANG Z, LANG Y L, YAN L, et al. Effect of cooling rate on freezing point of fruit and vegetables[J]. Journal of Hainan Normal University (Natural Science), 2020, 33(4): 433-440.

    [13] 彭艳芳. 枣果营养成分分析与冬枣货架期保鲜研究[D]. 保定: 河北农业大学, 2003.

    PENG Y F. Study on fruit nutrition and shelf life of Chinese Jujube (Ziziphus jujuba Mill.)[D]. Baoding: Hebei Agricultural University, 2003.

    [14] 魏艳, 黄洁, 林立铭, 等. 木薯块根不同部位的营养成分研究[J]. 西北农林科技大学学报,2016,44(6):53−61. [WEI Y, HUANG J, LIN L M, et al. Nutrients in different parts of cassava root[J]. Journal of Northwest A & F University (Nat. Sci. Ed),2016,44(6):53−61.

    WEI Y, HUANG J, LIN L M, et al. Nutrients in different parts of cassava root[J]. Journal of Northwest A & F University (Nat. Sci. Ed), 2016, 44(6): 53-61.

    [15] 宋丽荣, 陈淑湘, 林向东. 食品物料冻结点测定方法研究[J]. 食品科学,2011,32:126−131. [SONG L R, CHEN S X, LIN X D. Research on determination of freezing point of food materials[J]. Food Science,2011,32:126−131.

    SONG L R, CHEN S X, LIN X D. Research on determination of freezing point of food materials[J]. Food Science, 2011, 32: 126-131.

    [16] 中华人民共和国国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定: GB 5009.3-2016[S]. 北京: 中国标准出版社, 2016.

    National Health Commission of the People’s Republic of China. National Food Safety Standard-Determination of moisture in food: GB 5009.3-2016[S]. Beijing: Standards Press of China, 2016.

    [17] NY/T 2637-2014水果和蔬菜可溶性固形物含量的测定 折射仪法[S]. NY/T 2637-2014.

    NY/T 2637-2014 Determination of soluble solids in fruits and vegetables-Refractometer method[S]. NY/T 2637-2014.

    [18] GB/T 20378-2006 原淀粉 淀粉含量的测定 旋光法[S]. GB/T 20378-2006.

    GB/T 20378-2006 Native starch-Determination of starch content-Ewers polarimetric method[S]. GB/T 20378-2006.

    [19]

    KIM H K, CHOI Y H, VERPOORTE R. NMR-based metabolomic analysis of plants[J]. Nature Protocols,2010,5(3):536−549. doi: 10.1038/nprot.2009.237

    [20]

    WANT E J, OMAILLE G, SMITH C A, et al. Solvent-dependent metabolite distribution, clustering, and protein extraction for serum profiling with mass spectrometry[J]. Analytical Chemistry,2006,78(3):743−752. doi: 10.1021/ac051312t

    [21]

    BAINY E M, CORAZZA M L, LENZIM K. Measurement of freezing point of tilapia fish burger using differential scanning calorimetry (DSC) and cooling curve method[J]. Journal of Food Engineering,2015,161:82−86. doi: 10.1016/j.jfoodeng.2015.04.001

    [22] 钟志友, 张敏, 杨乐, 等. 果蔬冰点与其生理生化指标关系的研究[J]. 食品工业科技,2011(2):76−78. [ZHONG Z Y, ZHANG M, YANG L, et al. Study on relation between freezing and physiological and biochemical indexes of fruit and vegetable[J]. Science and Technology of Food Industry,2011(2):76−78.

    ZHONG Z Y, ZHANG M, YANG L, et al. Study on relation between freezing and physiological and biochemical indexes of fruit and vegetable[J]. Science and Technology of Food Industry, 2011, 2: 76-78.

    [23] 江永, 李奇伟, 卢颖林, 等. 甘蔗蔗糖积累的规律、影响因素及其调控机制的研究进展[J]. 甘蔗糖业,2011(6):11−17. [JIANG Y, LI Q W, LU Y L, et al. Advances in the rules, influencing factor and regulatory mechanisms of sucrose accumulation in sugarcane[J]. Sugarcane and Canesugar,2011(6):11−17. doi: 10.3969/j.issn.1005-9695.2011.06.003

    JIANG Y, LI Q W, LU Y L, et al. Advances in the rules, influencing factor and regulatory mechanisms of sucrose accumulation in sugarcane[J]. Sugarcane and Canesugar, 2011, 6: 11-17. doi: 10.3969/j.issn.1005-9695.2011.06.003

    [24] 颜克伟, 徐景升, 祁建民. 甘蔗糖代谢及转录组学研究[C] //中国作物学会. 2012年中国作物学会学术年会论文摘要集. 北京: 中国农业科学技术出版社, 2012: 36.

    YAN K W, XU J S, QI J M. The metabolism and transcriptome studies of cane sugar[C]//The Crop Science Society of China. The Academic Conference Abstract Set of the Crop Science Society of China. Beijing: China’s Agricultural Science and Technology Press, 2012: 36.

    [25]

    BOULESTEI X A L, STRIMMER K. Partial least squares: A versatile tool for the analysis of high-dimensional genomic data[J]. Briefings in Bioinformatics,2007,8:32−44.

    [26]

    SVENJA H, KEVIN Q, CHARMION C Q, et al. Exploratory metabolomics profiling in the kainic acid rat model reveals depletion of 25-hydroxyvitamin D3 during epileptogenesis[J]. Scientific Reports,2016,6:1−14. doi: 10.1038/s41598-016-0001-8

    [27]

    DONGRAO G, JINKAI S, JIANGUO Z. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.)[J]. Biology Open,2016,5:829−836. doi: 10.1242/bio.017863

    [28]

    HASPEL J A, CHETTIMADA S, SHAIK R S, et al. Circadian rhythm reprogramming during lung inflammation[J]. Nature Communications,2014,5:1−34.

    [29]

    SREEKUMAR A, POISSON L M, RAJENDIRAN T M, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression[J]. Nature,2009,457:910−914. doi: 10.1038/nature07762

    [30]

    CHRISTIAN J, VIOLAINE S, STEPHEN J J. The freezing and supercooling of garlic (Allium sativum L.) Congélation et surfusion d'ail (Allium sativum L.)[J]. International Journal of Refrigeration,2009,32(2):253−260. doi: 10.1016/j.ijrefrig.2008.05.012

    [31] 应月, 李宝国, 董梅, 等. 冰温技术在食品贮藏中的研究进展[J]. 制冷技术,2009,2:12−15. [YING Y, LI B G, DONG M, et al. Advances in ice-temperature technique for food storage[J]. Refrigeration Technology,2009,2:12−15.

    YING Y, LI B G, DONG M, et al. Advances in ice-temperature technique for food storage[J]. Refrigeration Technology, 2009, 2: 12-15.

    [32] 王二欢, 许永华, 张忠宝, 等. 恒定低温对不同品系关玉竹组织抗冷性的影响[J]. 中国中药杂志,2015,40(1):68−72. [WANG E H, XU Y H, ZHANG Z B, et al. Effects of constant low temperature on cold resistance of different strains Polygonatum odoratum[J]. China Journal of Chinese Materia Medica,2015,40(1):68−72.

    WANG E H, XU Y H, ZHANG Z B, et al. Effects of constant low temperature on cold resistance of different strains Polygonatum odoratum[J]. China Journal of Chinese Materia Medica, 2015, 40(1): 68-72.

    [33]

    KHAN M I, FATMA M, PER T S, et al. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants[J]. Front Plant Sci,2015,6:462.

    [34]

    MIURA K, TADA Y. Regulation of water, salinity, and cold stress responses by salicylic acid[J]. Front Plant Sci,2014,5:4.

    [35]

    WANG W L, WANG X, ZHANG J, et al. Salicylic acid and cold priming induce late-spring freezing tolerance by maintaining cellular redox homeostasis and protecting photosynthetic apparatus in wheat[J]. Plant Growth Regulation,2020,90(1):109−121. doi: 10.1007/s10725-019-00553-8

    [36]

    CHUANFU A, MOU Z L. Salicylic acid and its function in plant immunity[J]. Journal of Integrative Plant Biology,2011,53(6):412−428. doi: 10.1111/j.1744-7909.2011.01043.x

    [37]

    CLÁUDIA J, MÓNICA M, PEDRO M, et al. Salicylic acid application modulates physiological and hormonal changes in Eucalyptus globulus under water deficit[J]. Environmental and Experimental Botany,2015,118:56−66. doi: 10.1016/j.envexpbot.2015.06.004

    [38] 王维领, 赵灿, 李国辉, 等. 水杨酸在植物抵御低温胁迫中的作用[J]. 植物生理学报,2020,56(12):2585−2594. [WANG W L, ZHAO C, LI G H, et al. Role of salicylic acid in plant response to cold stress[J]. Plant Physiology Journal,2020,56(12):2585−2594.

    WANG W L, ZHAO C, LI G H, et al. Role of salicylic acid in plant response to cold stress[J]. Plant Physiology Journal, 2020, 56(12): 2585-2594.

    [39] 张秋明, 郑玉生, 魏岳荣, 等. 柑桔多胺代谢及其对生长结果调控的研究[J]. 湖南农业大学学报,2000,4:271−273. [ZHANG Q M, ZHENG Y S, WEI Y R, et al. Studies on polyamine metabolism and its regulation of grown and fruit set in citrus[J]. Journal of Hunan Agricultural University (Natural Sciences),2000,4:271−273.

    ZHANG Q M, ZHENG Y S, WEI Y R, et al. Studies on polyamine metabolism and its regulation of grown and fruit set in citrus[J]. Journal of Hunan Agricultural University (Natural Sciences), 2000, 4: 271-273.

图(6)  /  表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-17
  • 网络出版日期:  2022-06-02
  • 刊出日期:  2022-07-31

目录

/

返回文章
返回