Correlation Analysis between Mineral Elements Content and Quality Ingredients of Flat Green Tea
-
摘要: 为探明扁形绿茶矿质元素含量与品质成分是否存在一定的相关性,实地采集5个产地(湖北省大悟县、浙江省磐安县、安徽省歙县、贵州省湄潭县、四川省峨眉山市)共10个代表性扁形绿茶样品,测定了9种矿质元素(Mg、K、Ca、P、Al、Mn、Fe、Zn、B)与5种品质成分(水浸出物、茶多酚、游离氨基酸、可溶性总糖、咖啡碱)含量。结果表明,扁形绿茶样品中矿质元素之间互相影响,存在协同或拮抗作用。品质成分中水浸出物含量与B含量呈显著负相关(P<0.05),茶多酚含量与Fe含量呈极显著负相关(P<0.01),可溶性总糖含量与B含量呈显著正相关(P<0.05),与Mg、Ca含量则呈显著负相关(P<0.05),Fe、Mn含量与咖啡碱存在显著负相关(P<0.05)。主成分分析结果显示前3个主成分解释累计方差贡献率为89.00%,Mg、Ca、Zn、Al、P可作为扁形绿茶的特征矿质元素,水浸出物、游离氨基酸可作为评价扁形绿茶品质的重要理化指标。聚类分析结果表明,同一产地的扁形绿茶样品聚为一类,不同产地则明显区分开,表明扁形绿茶品质存在明显的地域分布特征。Abstract: In order to explore the correlation between mineral elements content and quality ingredients of flat green tea, ten representative flat green tea samples from five production areas (Dawu County, Hubei Province, Pan'an County, Zhejiang Province, She County, Anhui Province, Meitan County, Guizhou Province and Emeishan City, Sichuan Province) were collected. The content of nine mineral elements (Mg, K, Ca, P, Al, Mn, Fe, Zn, B) and five quality ingredients (water extracts, tea polyphenols, free amino acids, total soluble sugars, caffeine) were determined. Results showed that the mineral elements influenced each other and existed with synergistic or antagonistic effects. The water extracts content was significantly negatively correlated with the B content (P<0.05), the tea polyphenol content was extremely negatively correlated with Fe content (P<0.01), the total soluble sugar content was significantly positive to the B content (P<0.05), but negatively correlated with Mg and Ca content (P<0.05), Fe and Mn had a negative effect on caffeine content. The principal component analysised exhibited that the first three principal components explained 89.00% of the cumulative variance contribution, Mg, Ca, Zn, Al and P were considered as characteristic elements of flat green tea, water extracts content and free amino acids content were considered as important physicochemical indicators to evaluate the quality of flat green tea. Cluster analysis showed that samples from the same producing area were grouped together, and samples from different producing areas were clearly separated, indicated that the quality of flat green tea showed distinct regional distribution characteristics.
-
茶树对矿质元素有很强的富集能力,茶叶中以无机盐形式存在的基本元素有50 多种,主要的有30多种,既包含K、Ca、Mg等常量元素,也包含Fe、Mn、Zn等微量元素,占茶叶干重(以灰分计算)的4%~6%[1]。矿质元素是茶树生长发育、提高产量和品质的物质基础,在调控茶树生理代谢和品质形成过程中作用明显。研究表明,P促进光合作用,增加糖的积累,而糖可以转化为多酚[2]。缺P降低了黄酮类化合物和P酸化代谢物的合成,降低了谷氨酸含量,提高了谷氨酰胺含量,而过量P降低谷氨酰胺,以及次级代谢相关的对香豆酸、吲哚丙烯酸的含量[3]。茶树缺钾会导致茶氨酸、茶多酚、儿茶素、β-苯乙醇等茶叶品质成分显著降低[4-5]。Mukhopadhyay等[6]发现适宜Zn浓度培养的植株叶片和根中可溶性糖、还原糖和淀粉的积累量高于缺Zn和过量Zn培养的植株。由此可见,茶树叶片的品质成分与其矿质营养密切相关。
由鲜叶加工成茶叶后,受产地的气候条件、土壤状况及加工方式等影响,不同产地茶叶中矿质元素含量存在着一定的差异性[7]。茶叶矿质元素作为茶叶品质成分指标关系着茶叶的质量[1]。叶江华等[8]研究了武夷岩茶品质与矿质元素间的关系,发现武夷岩茶等级与茶多酚、EGCG、酚氨比、咖啡碱、ECG、EGC 呈显著正相关,与Mn 含量呈显著负相关。
扁形绿茶属于绿茶中的一类,因外形扁平而得名。其产地分布广泛,是我国绿茶的主导产品之一[9]。独特的造型和上乘的品质,使得扁形绿茶具有较高的市场知名度和文化传播度[10-11],如浙江省的西湖龙井茶、四川省的竹叶青茶、贵州省的湄潭翠芽等。然而,扁形绿茶矿质元素含量与其品质之间的关系尚不清楚,研究有待深入。本研究以5个不同产地的扁形绿茶为对象,分析比较9种矿质元素与5种品质成分相关性,探讨扁形绿茶矿质元素与品质的关系,以期为扁形绿茶产区的茶树科学种植、合理施肥与营养补充,品质提升等提供理论依据和指导。
1. 材料与方法
1.1 材料与仪器
扁形绿茶原料 分别实地采集于湖北大悟、浙江磐安、安徽歙县、贵州湄潭、四川峨眉山。2018年3月至4月春茶样品,每个产地的样品选取2个,原料质量等级为一级,加工方式按照扁形绿茶基本工艺流程,即“摊青→杀青→做形→干燥”。样品取回后统一存放于4 ℃冰箱冷藏,待使用时取出。扁形绿茶样品基本信息见表1;甲醇、乙腈 均为色谱纯,购自德国Merck公司;冰乙酸、碳酸钠、福林-酚、茚三酮等 均为国产分析纯,购自国药集团化学试剂有限公司。
表 1 扁形绿茶样品基本信息Table 1. Basic information of flat green tea samples编号 样品名称 产地 生产厂家 X-1 孝感龙剑茶 湖北省大悟县 大悟黄龙柏园茶叶有限公司 X-2 L-1 龙井茶 浙江省磐安县 浙江清连香茶业有限公司 L-2 D-1 大方茶 安徽省歙县 黄山茶业集团有限公司 D-2 M-1 湄潭翠芽 贵州省湄潭县 贵州湄潭沁园春茶业有限公司 M-2 Z-1 竹叶青茶 四川省峨眉山市 四川省峨眉山竹叶青茶业有限公司 Z-2 HHS型恒温水浴锅 上海博迅医疗生物仪器股份有限公司;UV-2550紫外-可见光分光光度计 日本岛津公司;Waters 2695高效液相色谱、2998 PDA 检测器 美国Waters公司;Milli-RO PLUS 30纯水机 法国Millipore公司;Avio200电感耦合等离子体发射光谱仪 美国PerkinElmer公司。
1.2 实验方法
1.2.1 矿质元素含量测定
矿质含量测定参考王敏等[12]方法。取扁形绿茶样品0.4 g,至玻璃消化管,依次加入5 mL HNO3 与2 mL HClO4,盖上盖子,60 ℃预消煮2 h后,120 ℃消煮至消煮液无色澄清透明,冷却后,用双蒸水稀释至50 mL。取10 mL使用ICP-OES(电感耦合等离子体原子发射光谱法)测定元素的含量。标准曲线绘制:用1%稀硝酸将矿质元素标准储备液(国家有色金属及电子材料分析测试中心)逐级稀释为0、5、10、30、40、50 µg/mL,仪器自动绘制标准曲线。测定样品中的镁(Mg)、钾(K)、钙(Ca)、磷(P)、铝(Al)、锰(Mn)、铁(Fe)、锌(Zn)、硼(B)等矿质元素含量。
1.2.2 主要化学成分含量测定
水浸出物含量测定:参照GB/T 8305-2013《茶 水浸出物测定》[13];茶多酚含量测定:参照GB/T 8313-2018《茶叶中茶多酚和儿茶素含量的检测方法》中福林-酚法[14];游离氨基酸总量测定:参照GB/T 8314-2013《茶游离氨基酸总量测定》茚三酮比色法[15];可溶性总糖的测定采用蒽酮-硫酸法[16],具体步骤为:称取茶粉0.6 g于锥形瓶中,加80 mL沸水,100 ℃水浴浸提45 mim。取出趁热过滤,滤渣用沸蒸馏水重复洗涤数次,滤液放冷,定容至100 mL。用移液管准确加入8 mL蒽酮试剂(0.6 g蒽酮溶于100 mL浓硫酸)于干燥的25 mL刻度试管;取1 mL稀释一倍后的茶汤,逐滴加入,摇匀,1 mL水作对照,置沸水浴中准确煮沸3 min,取出后自然冷却至室温,测定液用分光光度计在620 nm处比色,记下吸光度A值。每个样品重复3次。咖啡碱含量采用高效液相色谱法[17],流动相为2%乙酸和乙腈,色谱条件:检测波长为280 nm,流速:1 mL/min,柱温:40 ℃,进样量:10 μL。
1.3 数据处理
试验均平行测定3次,采用Microsoft Excel 2016和SAS 9.4数据处理系统对实验数据进行计算,以及相关性分析、主成分分析、聚类分析和方差分析。
2. 结果与分析
2.1 扁形绿茶矿质元素含量特征分析
根据ICP-OES仪器测定的元素峰面积(y)以及对应的浓度(x),绘制了标准曲线,得到各元素浓度与峰面积的线性关系方程及R2值,如表2所示。其中Mg、Al、Mn、Fe、Zn、B浓度线性变化范围为0~10 μg/mL,K、Ca、P浓度线性变化范围为0~50 μg/mL。R2值均大于0.9990,表明标准曲线方程可信度高。
表 2 各元素浓度与峰面积的线性方程及R2值Table 2. Linear equation and R2 value of each element concentration and peak area元素 各元素浓度与峰面积的线性方程 R2值 Mg y=7E+06x+61694 0.9999 K y=4E+07x–1E+06 0.9991 Ca y=1E+07x–119315 0.9995 P y=265004x+622.68 0.9999 Al y=2E+06x–5121.7 0.9993 Mn y=2E+07x–135076 0.9998 Fe y=1E+06x+42950 0.9996 Zn y=376520x+6870.3 1.0000 B y=1E+06x+8476.9 0.9998 不同产地扁形绿茶样品矿质元素含量存在差异如表3所示,5个不同产地的扁形绿茶样品大量矿质元素平均含量呈现K>P>Ca>Mg的特征。K含量最高,含量范围为15609.66~45912.66 mg/kg(均值为25765.51 mg/kg);P、Ca含量相对较低;Mg含量最低,含量范围为1460.35~2467.77 mg/kg(均值为1882.71 mg/kg)。微量矿质元素平均含量顺序为Mn>Al>Fe>Zn>B。Mn在5种微量元素中含量最高,含量范围为543.52~1393.27 mg/kg(均值为885.31 mg/kg);B含量最低,范围为5.07~36.15 mg/kg(均值为26.18 mg/kg);Fe和Zn的含量在Al、B之间,其中Fe含量:大方茶>孝感龙剑茶>龙井茶,在湄潭翠芽和竹叶青茶中无显著差异;Zn含量:孝感龙剑茶>龙井茶>大方茶,在湄潭翠芽和竹叶青茶中也无显著差异。各元素含量变异系数(Coefficient of Variation,CV)从大到小排序为Zn>B>K>Mn>Fe>Al>Mg>Ca>P。若设CV<15.00%为弱变异,15.00%≤CV≤36.00%为中等变异,CV>36.00%为强变异[18],扁形绿茶样品中Zn的变异系数最大(CV=66.65%),B(CV=42.05%)、K(CV=39.93)次之,三者均为强变异;P的变异系数最小(CV=8.19%),为弱变异;Mn、Fe、Al、Mg、Ca为中等变异,Mg、Ca的变异系数相对较低,分别为21.00%、20.75%,可能是因为Mg主要参与茶树的光合作用[19],而茶树又是嫌Ca植物[20],对Ca的需求比一般园艺作物低,过多的Ca也会对茶树造成“钙害”。多数矿质元素含量为强变异和中等变异,且随产地环境的变化而变化,这与张建等[21]对不同产地辣椒矿质元素含量变化的研究结果相似。
表 3 扁形绿茶矿质元素含量(mg/kg)Table 3. Contents of mineral elements in flat green tea samples (mg/kg)样品名称 Mg K Ca P Al Mn Fe Zn B X-1 2467.77±139.03a 26812.72±681.90c 5779.68±129.26bc 6429.91±183.03b 283.56±11.98b 739.38±6.00d 143.10±7.55b 209.74±7.60a 5.07±0.11g X-2 2383.77±92.95ab 23054.72±1181.76d 5899.90±83.51b 6221.26±78.16bc 309.05±15.87a 739.59±6.95d 143.48±3.38b 194.32±3.43b 5.64±0.06g L-1 2238.44±92.65b 41974.45±1568.40b 6155.54±108.72a 6171.99±46.24c 297.65±8.68ab 1393.27±5.18a 122.13±4.98c 88.47±2.11d 26.85±1.16f L-2 2336.57±174.12ab 45912.66±1534.21a 5619.95±138.72c 6194.09±87.28bc 299.29±14.76ab 1387.17±7.52a 130.27±6.44c 96.45±4.24c 25.4±0.31e D-1 1697.12±58.80c 28389.96±1226.05c 4590.08±68.36d 5202.39±73.60e 187.06±7.81d 1160.60±19.85b 152.20±7.83b 77.97±2.34e 36.15±0.96a D-2 1622.72±22.62cd 27046.28±605.17c 4200.52±64.73e 5432.96±84.64de 161.66±10.48e 1032.17±11.69c 166.94±6.33a 75.8±3.646e 35.27±0.14a M-1 1460.35±48.80d 16316.22±689.34e 3172.14±74.70g 6332.00±116.38bc 216.81±12.16c 585.25±14.57f 78.87±3.70d 37.85±1.75f 30.13±0.35c M-2 1587.9±63.76cd 16562.20±569.94e 3498.01±59.34f 6700.54±97.19a 235.26±5.19c 543.52±12.27g 80.83±1.78d 39.61±1.04f 28.16±0.45d Z-1 1540.39±41.81cd 15609.66±433.23e 4247.12±180.90e 5351.96±151.22e 146.94±7.16e 687.58±20.37e 81.26±1.56d 36.39±0.66f 35.31±0.37a Z-2 1492.05±10.84d 15976.22±687.76e 4529.30±66.35d 5650.46±102.96de 143.82±4.55e 584.60±13.96f 72.51±3.08d 43.02±1.04f 33.83±0.65b 最小值 1460.35 15609.66 3172.14 5202.39 143.82 543.52 72.51 36.39 5.07 最大值 2467.77 45912.66 6155.54 6700.54 309.05 1393.27 166.94 209.74 36.15 标准偏差 395.35 10288.69 989.82 489.09 62.85 314.03 33.67 59.96 11.01 变异系数CV
(%)21.00 39.93 20.75 8.19 27.55 35.47 28.74 66.65 42.05 注:不同小写字母表示同一列数据具有显著差异(P<0.05);表4同。 2.2 扁形绿茶品质成分特征分析
如表4所示,茶叶中水浸出物是一切可溶性物质的总和,对茶叶的品质起重要的作用[22]。大方茶和湄潭翠芽中水浸出物平均含量高于孝感龙剑茶、竹叶青茶,分别达到48.83%、48.00%。5个产地扁形绿茶的茶多酚含量在15.66%~16.88%之间。游离氨基酸对绿茶滋味贡献主要表现为鲜爽、醇和[23]。不同产地扁形绿茶中游离氨基酸平均含量以湄潭翠芽最高(3.40%),高于其他4个产地的扁形绿茶样品,竹叶青茶中游离氨基酸含量最低(2.66%)。可溶性总糖平均含量以大方茶最高,为8.17%,高于其他4个产地的扁形绿茶样品。湄潭翠芽和竹叶青茶中咖啡碱平均含量均超过4.00%,分别达到4.40%、4.29%,高于其他3个产地的扁形绿茶。5个产地的扁形绿茶可溶性总糖、水浸出物、茶多酚、游离氨基酸、咖啡碱等品质成分含量存在差异,但从变异系数来看,5种品质成分含量均为弱变异(CV<15.00%)。
表 4 扁形绿茶样品主要品质成分指标含量(%)Table 4. Contents of quality ingredients in flat green tea samples (%)样品名称 水浸出物 茶多酚 游离氨基酸 可溶性总糖 咖啡碱 X-1 45.17±0.50c 16.04±0.14f 2.87±0.01f 5.82±0.11e 3.66±0.01f X-2 45.22±0.45c 16.09±0.09f 2.73±0.02g 6.00±0.15e 3.77±0.03e L-1 47.53±0.58b 16.19±0.10e 3.19±0.02c 6.59±0.17c 3.78±0.02e L-2 47.35±0.80b 16.31±0.08de 3.14±0.02d 6.30±0.13d 3.87±0.02d D-1 48.65±0.83ab 15.74±0.06de 3.09±0.00e 8.28±0.13a 3.45±0.01h D-2 49.01±0.54a 15.66±0.02cd 3.18±0.01c 8.05±0.18a 3.57±0.01g M-1 47.91±0.82ab 16.5±0.15bc 3.52±0.04a 7.73±0.03b 4.49±0.01a M-2 48.09±0.56ab 16.64±0.09b 3.28±0.02b 7.51±0.03b 4.31±0.00b Z-1 45.82±0.14c 16.69±0.13ab 2.68±0.02h 6.59±0.11c 4.34±0.01b Z-2 46.08±0.29c 16.88±0.11a 2.64±0.02h 6.55±0.08cd 4.24±0.01c 最小值 45.17 15.66 2.64 5.82 3.45 最大值 49.01 16.88 3.52 8.28 4.49 标准偏差 1.34 0.39 0.28 0.83 0.35 变异系数CV(%) 2.84 2.37 9.08 12.00 8.83 2.3 扁形绿茶品质成分与矿质元素相关性分析
以Mg、K、Ca、P、Al、Mn、Fe、Zn、B等矿质元素含量为一总体,以水浸出物、茶多酚、游离氨基酸、可溶性总糖、咖啡碱等品质成分含量为另一总体,分析两两之间的相关性。由表5可知,Mg与Ca、Al、Zn呈极显著正相关(P<0.01),与K呈显著正相关(P<0.05),与B呈极显著负相关(P<0.01);K与Mn呈极显著正相关(P<0.01),与Ca呈显著正相关(P<0.05);Ca与Al、Zn呈显著正相关(P<0.05);P与Al呈显著正相关(P<0.05);Al与Zn呈显著正相关(P<0.05),与B呈显著负相关(P<0.05);Zn与B呈极显著正相关(P<0.01)。以上表明扁形绿茶样品中各矿质元素之间互相影响,且存在协同或拮抗作用。
表 5 扁形绿茶样品矿质元素含量的相关性分析Table 5. Correlation analysis of mineral elements contents in flat green tea samples元素 Mg K Ca P Al Mn Fe Zn B Mg 1 K 0.672* 1 Ca 0.905** 0.696* 1 P 0.423 0.082 0.115 1 Al 0.879** 0.603 0.677* 0.720* 1 Mn 0.462 0.942** 0.571 −0.208 0.367 1 Fe 0.550 0.564 0.529 −0.213 0.329 0.595 1 Zn 0.862** 0.301 0.740* 0.313 0.674* 0.118 0.627 1 B −0.812** −0.138 −0.612 −0.606 −0.762* 0.120 −0.320 −0.921** 1 注: *表示在0.05水平(双侧)显著相关; **表示在0.01水平(双侧)极显著相关;表6同。 由表6可以看出,水浸出物含量与B含量呈显著负相关(P<0.05);茶多酚含量与Fe含量呈极显著负相关(P<0.01);可溶性总糖含量与B含量呈显著正相关(P<0.05),与Mg、Ca含量呈显著负相关(P<0.05);咖啡碱含量与Fe含量呈极显著负相关(P<0.01),与Mn含量呈显著负相关(P<0.05)。由此可见,扁形绿茶的品质的形成受多种矿质元素不同程度的影响。
表 6 扁形绿茶样品矿质元素含量与品质成分指标相关性分析Table 6. Correlation analysis between mineral elements contents and quality ingredients of flat green tea samples元素 水浸出物 茶多酚 游离氨基酸 可溶性总糖 咖啡碱 Mg −0.452 −0.372 −0.180 −0.702* −0.544 K 0.202 −0.460 0.221 −0.206 −0.594 Ca −0.474 −0.334 −0.406 −0.705* −0.608 P −0.199 0.252 0.359 −0.380 0.284 Al −0.255 −0.220 0.179 −0.536 −0.284 Mn 0.378 −0.544 0.227 0.034 −0.643* Fe 0.177 −0.956** 0.020 0.062 −0.953** Zn −0.558 −0.488 −0.327 −0.602 −0.592 B 0.665* 0.183 0.257 0.707* 0.261 2.4 扁形绿茶矿质元素与品质主成分分析
主成分分析和聚类分析可研究农产品的特征元素、地域分布和亲缘关系,为农产品的品质评价提供重要参考[24-25]。利用主成分分析方法对扁形绿茶样品矿质元素及品质成分指标进行分析,由图1可知,碎石图前面陡峭的部分(成分1~4)特征值大,包含的信息多,后面平坦的部分(成分5~14)特征值小,包含的信息也少。
以特征值>1为原则,共提取了4个主成分(表7),结果表明,解释的累计方差贡献率为98.33%。第1主成分与Mg(0.979)、Ca(0.920)、Zn(0.895)、Al(0.807)含量高度正相关,方差贡献率为46.16%。第2主成分与水浸出物含量(0.843)高度正相关,方差贡献率为28.35%。第3主成分与P(0.800)、游离氨基酸含量(0.803)高度正相关,方差贡献率为14.49%。第4主成分与Mn、茶多酚含量相对正相关。前3个主成分解释累计方差贡献率为89.00%(>80.00%),因此Mg、Ca、Zn、Al、P可作为扁形绿茶的特征矿质元素,水浸出物、游离氨基酸可作为评价扁形绿茶品质的重要理化指标。
表 7 扁形绿茶样品矿质元素与品质成分指标的主成分分析Table 7. Principal component analysis of mineral elements and quality ingredient traits of flat green tea samples指标 主成分 1 2 3 4 Mg 0.979 −0.130 0.125 0.073 K 0.679 0.476 0.246 0.490 Ca 0.920 −0.066 −0.159 0.313 P 0.286 −0.465 0.800 −0.185 Al 0.807 −0.153 0.543 0.015 Mn 0.511 0.681 0.084 0.514 Fe 0.691 0.604 −0.233 −0.292 Zn 0.895 −0.210 −0.129 −0.366 B −0.777 0.494 −0.114 0.372 水浸出物 −0.387 0.843 0.346 −0.041 茶多酚 −0.525 −0.723 0.162 0.405 游离氨基酸 −0.208 0.508 0.803 −0.165 可溶性总糖 −0.610 0.716 0.094 −0.295 咖啡碱 −0.691 −0.600 0.321 0.165 特征值 6.463 3.969 2.028 1.306 方差贡献率(%) 46.16 28.35 14.49 9.33 累计方差贡献率(%) 46.16 74.51 89.00 98.33 采用最短距离法对数据进行分类处理,如图2所示,在0.89的分类距离下,所有的扁形绿茶样品聚成2类。来自湖北大悟的孝感龙剑茶X-1、X-2,浙江淳安的龙井茶L-1、L-2样品和安徽歙县的大方茶D-1、D-2聚成一类;来自贵州湄潭的湄潭翠芽M-1、M-2,以及四川峨眉山的竹叶青茶Z-1、Z-2聚成一类。这可能是因为孝感龙剑茶、龙井茶和大方茶分别采自湖北省大悟县、浙江省磐安县、安徽省歙县,均属于长江中下游茶区(江南茶区),而湄潭翠芽和竹叶青茶的产地接近(均在西南茶区)而导致。此外,从加工工艺而言,两类也存在明显的差异性,前者多采用扁形茶炒制机加工,而后者多采用多功能理条机加工[10]。聚类分析结果,在一定程度上反映了扁形绿茶矿质元素和品质在不同产地间存在差异。同一产地的扁形绿茶,品质和矿质元素含量相近、品质相当,扁形绿茶矿质元素存在明显的地域性特征,这种地域性分布特征可能与各类扁形绿茶产地的土壤、气候、海拔等因素有关。
3. 结论
矿质营养是茶树生长发育、产量与茶叶品质形成的物质基础,矿质营养的含量因其生长的环境不同而表现出一定的差异。本研究采用ICP-OES测定了5个产区扁形绿茶中9种矿质元素含量,并分析了其与重要品质成分之间的相关性。不同产区所采集的样品中矿质元素含量存在很大差异,其中K、P、Ca、Mg含量较高,Mn、Al、Fe、Zn、B含量较低。各元素含量变异系数从大到小排序为Zn>B>K>Mn>Fe>Al>Mg>Ca>P。
扁形绿茶的品质形成受多种矿质元素不同程度的影响。其中,水浸出物含量与B含量呈显著负相关;茶多酚含量与Fe含量呈极显著负相关;可溶性总糖含量与B含量呈显著正相关,与Mg、Ca含量呈显著负相关;咖啡碱含量与Fe含量呈极显著负相关,与Mn含量呈显著负相关。因此,针对扁形绿茶品质成分的提高,可以从矿质营养的角度切入,首先提高或降低最影响品质成分的相关元素。
主成分分析表明,前3个主成分解释累计方差贡献率为89.00%,因此Mg、Ca、Zn、Al、P可作为扁形绿茶的特征矿质元素,水浸出物、游离氨基酸可作为评价扁形绿茶品质的重要理化指标。聚类分析结果在一定程度上反映扁形绿茶品质存在明显的地域性特征,这种地域性分布特征可能与各类扁形绿茶产地的土壤、气候、海拔等因素有关。
-
表 1 扁形绿茶样品基本信息
Table 1 Basic information of flat green tea samples
编号 样品名称 产地 生产厂家 X-1 孝感龙剑茶 湖北省大悟县 大悟黄龙柏园茶叶有限公司 X-2 L-1 龙井茶 浙江省磐安县 浙江清连香茶业有限公司 L-2 D-1 大方茶 安徽省歙县 黄山茶业集团有限公司 D-2 M-1 湄潭翠芽 贵州省湄潭县 贵州湄潭沁园春茶业有限公司 M-2 Z-1 竹叶青茶 四川省峨眉山市 四川省峨眉山竹叶青茶业有限公司 Z-2 表 2 各元素浓度与峰面积的线性方程及R2值
Table 2 Linear equation and R2 value of each element concentration and peak area
元素 各元素浓度与峰面积的线性方程 R2值 Mg y=7E+06x+61694 0.9999 K y=4E+07x–1E+06 0.9991 Ca y=1E+07x–119315 0.9995 P y=265004x+622.68 0.9999 Al y=2E+06x–5121.7 0.9993 Mn y=2E+07x–135076 0.9998 Fe y=1E+06x+42950 0.9996 Zn y=376520x+6870.3 1.0000 B y=1E+06x+8476.9 0.9998 表 3 扁形绿茶矿质元素含量(mg/kg)
Table 3 Contents of mineral elements in flat green tea samples (mg/kg)
样品名称 Mg K Ca P Al Mn Fe Zn B X-1 2467.77±139.03a 26812.72±681.90c 5779.68±129.26bc 6429.91±183.03b 283.56±11.98b 739.38±6.00d 143.10±7.55b 209.74±7.60a 5.07±0.11g X-2 2383.77±92.95ab 23054.72±1181.76d 5899.90±83.51b 6221.26±78.16bc 309.05±15.87a 739.59±6.95d 143.48±3.38b 194.32±3.43b 5.64±0.06g L-1 2238.44±92.65b 41974.45±1568.40b 6155.54±108.72a 6171.99±46.24c 297.65±8.68ab 1393.27±5.18a 122.13±4.98c 88.47±2.11d 26.85±1.16f L-2 2336.57±174.12ab 45912.66±1534.21a 5619.95±138.72c 6194.09±87.28bc 299.29±14.76ab 1387.17±7.52a 130.27±6.44c 96.45±4.24c 25.4±0.31e D-1 1697.12±58.80c 28389.96±1226.05c 4590.08±68.36d 5202.39±73.60e 187.06±7.81d 1160.60±19.85b 152.20±7.83b 77.97±2.34e 36.15±0.96a D-2 1622.72±22.62cd 27046.28±605.17c 4200.52±64.73e 5432.96±84.64de 161.66±10.48e 1032.17±11.69c 166.94±6.33a 75.8±3.646e 35.27±0.14a M-1 1460.35±48.80d 16316.22±689.34e 3172.14±74.70g 6332.00±116.38bc 216.81±12.16c 585.25±14.57f 78.87±3.70d 37.85±1.75f 30.13±0.35c M-2 1587.9±63.76cd 16562.20±569.94e 3498.01±59.34f 6700.54±97.19a 235.26±5.19c 543.52±12.27g 80.83±1.78d 39.61±1.04f 28.16±0.45d Z-1 1540.39±41.81cd 15609.66±433.23e 4247.12±180.90e 5351.96±151.22e 146.94±7.16e 687.58±20.37e 81.26±1.56d 36.39±0.66f 35.31±0.37a Z-2 1492.05±10.84d 15976.22±687.76e 4529.30±66.35d 5650.46±102.96de 143.82±4.55e 584.60±13.96f 72.51±3.08d 43.02±1.04f 33.83±0.65b 最小值 1460.35 15609.66 3172.14 5202.39 143.82 543.52 72.51 36.39 5.07 最大值 2467.77 45912.66 6155.54 6700.54 309.05 1393.27 166.94 209.74 36.15 标准偏差 395.35 10288.69 989.82 489.09 62.85 314.03 33.67 59.96 11.01 变异系数CV
(%)21.00 39.93 20.75 8.19 27.55 35.47 28.74 66.65 42.05 注:不同小写字母表示同一列数据具有显著差异(P<0.05);表4同。 表 4 扁形绿茶样品主要品质成分指标含量(%)
Table 4 Contents of quality ingredients in flat green tea samples (%)
样品名称 水浸出物 茶多酚 游离氨基酸 可溶性总糖 咖啡碱 X-1 45.17±0.50c 16.04±0.14f 2.87±0.01f 5.82±0.11e 3.66±0.01f X-2 45.22±0.45c 16.09±0.09f 2.73±0.02g 6.00±0.15e 3.77±0.03e L-1 47.53±0.58b 16.19±0.10e 3.19±0.02c 6.59±0.17c 3.78±0.02e L-2 47.35±0.80b 16.31±0.08de 3.14±0.02d 6.30±0.13d 3.87±0.02d D-1 48.65±0.83ab 15.74±0.06de 3.09±0.00e 8.28±0.13a 3.45±0.01h D-2 49.01±0.54a 15.66±0.02cd 3.18±0.01c 8.05±0.18a 3.57±0.01g M-1 47.91±0.82ab 16.5±0.15bc 3.52±0.04a 7.73±0.03b 4.49±0.01a M-2 48.09±0.56ab 16.64±0.09b 3.28±0.02b 7.51±0.03b 4.31±0.00b Z-1 45.82±0.14c 16.69±0.13ab 2.68±0.02h 6.59±0.11c 4.34±0.01b Z-2 46.08±0.29c 16.88±0.11a 2.64±0.02h 6.55±0.08cd 4.24±0.01c 最小值 45.17 15.66 2.64 5.82 3.45 最大值 49.01 16.88 3.52 8.28 4.49 标准偏差 1.34 0.39 0.28 0.83 0.35 变异系数CV(%) 2.84 2.37 9.08 12.00 8.83 表 5 扁形绿茶样品矿质元素含量的相关性分析
Table 5 Correlation analysis of mineral elements contents in flat green tea samples
元素 Mg K Ca P Al Mn Fe Zn B Mg 1 K 0.672* 1 Ca 0.905** 0.696* 1 P 0.423 0.082 0.115 1 Al 0.879** 0.603 0.677* 0.720* 1 Mn 0.462 0.942** 0.571 −0.208 0.367 1 Fe 0.550 0.564 0.529 −0.213 0.329 0.595 1 Zn 0.862** 0.301 0.740* 0.313 0.674* 0.118 0.627 1 B −0.812** −0.138 −0.612 −0.606 −0.762* 0.120 −0.320 −0.921** 1 注: *表示在0.05水平(双侧)显著相关; **表示在0.01水平(双侧)极显著相关;表6同。 表 6 扁形绿茶样品矿质元素含量与品质成分指标相关性分析
Table 6 Correlation analysis between mineral elements contents and quality ingredients of flat green tea samples
元素 水浸出物 茶多酚 游离氨基酸 可溶性总糖 咖啡碱 Mg −0.452 −0.372 −0.180 −0.702* −0.544 K 0.202 −0.460 0.221 −0.206 −0.594 Ca −0.474 −0.334 −0.406 −0.705* −0.608 P −0.199 0.252 0.359 −0.380 0.284 Al −0.255 −0.220 0.179 −0.536 −0.284 Mn 0.378 −0.544 0.227 0.034 −0.643* Fe 0.177 −0.956** 0.020 0.062 −0.953** Zn −0.558 −0.488 −0.327 −0.602 −0.592 B 0.665* 0.183 0.257 0.707* 0.261 表 7 扁形绿茶样品矿质元素与品质成分指标的主成分分析
Table 7 Principal component analysis of mineral elements and quality ingredient traits of flat green tea samples
指标 主成分 1 2 3 4 Mg 0.979 −0.130 0.125 0.073 K 0.679 0.476 0.246 0.490 Ca 0.920 −0.066 −0.159 0.313 P 0.286 −0.465 0.800 −0.185 Al 0.807 −0.153 0.543 0.015 Mn 0.511 0.681 0.084 0.514 Fe 0.691 0.604 −0.233 −0.292 Zn 0.895 −0.210 −0.129 −0.366 B −0.777 0.494 −0.114 0.372 水浸出物 −0.387 0.843 0.346 −0.041 茶多酚 −0.525 −0.723 0.162 0.405 游离氨基酸 −0.208 0.508 0.803 −0.165 可溶性总糖 −0.610 0.716 0.094 −0.295 咖啡碱 −0.691 −0.600 0.321 0.165 特征值 6.463 3.969 2.028 1.306 方差贡献率(%) 46.16 28.35 14.49 9.33 累计方差贡献率(%) 46.16 74.51 89.00 98.33 -
[1] 王洁, 伊晓云, 马立锋, 等. ICP-MS和ICP-AES在茶叶矿质元素分析及产地溯源中的应用[J]. 茶叶学报,2015,56(3):145−150. [WANG J, YI X Y, MA L F, et al. ICP-MS and ICP-AES for mineral analysis and origin-tracing on tea products[J]. Acta Tea Sinica,2015,56(3):145−150. doi: 10.3969/j.issn.1007-4872.2015.03.004 WANG J, YI X Y, MA L F, et al. ICP-MS and ICP-AES for Mineral Analysis and Origin-tracing on Tea Products[J]. Acta Tea Sinica, 2015, 56(3): 145-150. doi: 10.3969/j.issn.1007-4872.2015.03.004
[2] LIN Z H, QI Y P, CHEN R B, et al. Effects of phosphorus supply on the quality of green tea[J]. Food Chemistry,2012,130(4):908−914. doi: 10.1016/j.foodchem.2011.08.008
[3] DING Z T, JIA S S, WANG Y, et al. Phosphate stresses affect ionome and metabolome in tea plants[J]. Plant Physiology and Biochemistry,2017,120:30−39. doi: 10.1016/j.plaphy.2017.09.007
[4] RUAN J Y, MA L F, SHI Y Z. Potassium management in tea plantations: Its uptake by field plants, status in soils, and efficacy on yields and quality of teas in China[J]. Journal of Plant Nutrition and Soil Science,2013,176:450−459. doi: 10.1002/jpln.201200175
[5] VENKATESAN S, MURNGESAN S, PANDIAN V S, et al. Impact of sources and doses of potassium on biochemical and green leaf parameters of tea[J]. Food Chemistry,2005,90(4):535−539. doi: 10.1016/j.foodchem.2004.05.014
[6] MUKHOPADHYAY M, DAS A, SUBBA P, et al. Structural, physiological, and biochemical profiling of tea plantlets under zinc stress[J]. Biologia Plantarum,2013,57(3):474−480. doi: 10.1007/s10535-012-0300-2
[7] GALLAHER R N, GALLAHER K, MARSHALL A J, et al. Mineral analysis of ten types of commercially available tea[J]. Journal of Food Composition and Analysis,2006,19:53−57. doi: 10.1016/j.jfca.2006.02.006
[8] 叶江华, 张奇, 刘德发, 等. 武夷肉桂茶品质差异分析及其与矿质元素间的关系[J]. 茶叶通讯,2021,48(1):105−113. [YE J H, ZHANG Q, LIU D F, et al. Analysis on the quality difference of wuyi rougui tea and its relationship with mineral elements[J]. Journal of Tea Communication,2021,48(1):105−113. doi: 10.3969/j.issn.1009-525X.2021.01.015 YE J H, ZHANG Q, LIU D F, et al. Analysis on the quality difference of wuyi rougui tea and its relationship with mineral elements[J]. Journal of Tea Communication, 2021, 48(1): 105-113. doi: 10.3969/j.issn.1009-525X.2021.01.015
[9] 谭俊峰, 林智, 李云飞, 等. 扁形绿茶自动化生产线构建和控制研究[J]. 茶叶科学,2012,32(4):283−288. [TAN J F, LIN Z LI Y F, et al. Design of automatic production line on flat-shape green tea[J]. Journal of Tea Science,2012,32(4):283−288. doi: 10.3969/j.issn.1000-369X.2012.04.001 TAN J F, LIN Z LI Y F, et al. Design of automatic production line on flat-shape green tea [J]. Journal of Tea Science, 2012, 32(4): 283-288 doi: 10.3969/j.issn.1000-369X.2012.04.001
[10] 桂安辉, 叶飞, 龚自明, 等. 扁形绿茶自动化生产线关键加工工艺优化[J]. 食品研究与开发,2021,42(6):49−56. [GUI A H, YE F, GONG Z M, et al. Optimization of key processing technology of flat green tea automated production line[J]. Food Research and Development,2021,42(6):49−56. GUI A H, YE F, GONG Z M, et al. Optimization of key processing technology of flat green tea automated production line[J]. Food Research and Development, 2021, 42(6): 49-56.
[11] 桂安辉, 高士伟, 叶飞, 等. 不同产地扁形绿茶的品质成分差异分析[J]. 食品工业科技,2020,41(20):218−223, 229. [GUI A H, GAO S W, YE F, et al. Differential analysis of quality components of flat green tea from different producing areas[J]. Science and Technology of Food Industry,2020,41(20):218−223, 229. GUI A H, GAO S W, YE F, et al. Differential analysis of quality components of flat green tea from different producing areas[J]. Science and Technology of Food Industry, 2020, 41(20) : 218-223, 229.
[12] 王敏, 宁秋燕, 石元值. 茶树幼苗对不同浓度铝的生理响应差异研究[J]. 茶叶科学,2017,37(4):356−362. [WANG M, NING Q Y, SHI Y Z, et al. Study on physiological response of tea plant (Camellia sinensis) seedlings to different aluminum concentrations[J]. Journal of Tea Science,2017,37(4):356−362. doi: 10.3969/j.issn.1000-369X.2017.04.005 WANG M, NING Q Y, SHI Y Z, et al. Study on physiological response of tea plant (Camellia sinensis) seedlings to different aluminum concentrations[J]. Journal of Tea Science, 2017, 37(4): 356-362. doi: 10.3969/j.issn.1000-369X.2017.04.005
[13] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 8305-2013 茶 水浸出物测定[S]. 北京: 中国标准出版社, 2014. State Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. GB/T 8305-2013 Determination of tea water extract[S]. Beijing: China Standards Press, 2014.
[14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 8313-2018茶叶中茶多酚和儿茶素类含量的检测方法[S]. 北京: 中国标准出版社, 2018. State Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration Committee. GB/T 8313-2018 Determination of total polyphenols and catechins content in tea[S]. Beijing: China Standards Press, 2018.
[15] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 8314-2013 茶 游离氨基酸总量的测定[S]. 北京: 中国标准出版社, 2014. State Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China National Standardization Administration Committee. GB/T 8314-2013 Determination of tea free amino acids content[S]. Beijing: China Standards Press, 2014.
[16] 商业部. 茶叶品质理化分析[M]. 上海: 上海科学技术出版社, 1989: 250−350. Department of Commerce. Physical and chemical analysis of tea quality[M]. Shanghai: Shanghai Science and Technology Press, 1989: 250−350.
[17] 刘盼盼, 高士伟, 郑鹏程, 等. 冲泡条件对恩施玉露绿茶茶汤品质的影响[J]. 食品工业科技,2016,37(20):138−144. [LIU P P, GAO S W, ZHENG P C, et al. Effect of brewing conditions on quality of Enshi Yulu green tea infusion[J]. Science and Technology of Food Industry,2016,37(20):138−144. LIU P P, GAO S W, ZHENG P C, et al. Effect of brewing conditions on quality of Enshi Yulu green tea infusion[J]. Science and Technology of Food Industry, 2016, 37(20): 138-144.
[18] 刘继龙, 刘璐, 马孝义, 等. 不同尺度不同土层土壤盐分的空间变异性研究[J]. 应用基础与工程科学学报,2018,26(2):305−312. [LIU J L, LIU L, MA X Y, et al. Spatial variability of soil salt in different soil layers at different scales[J]. Journal of Basic Science and Engineering,2018,26(2):305−312. LIU J L, LIU L, MA X Y, et al. Spatial variability of soil salt in different soil layers at different scales[J]. Journal of Basic Science and Engineering, 2018, 26(2): 305-312.
[19] 任明强, 赵宾, 赵国宣, 等. 不同叶位新梢绿茶的品质及其影响因素探讨[J]. 贵州农业科学,2010,38(12):77−79. [REN M Q, ZHAO B, ZHAO G X, et al. Quality of green tea from different leaf position on new shoots and its influence factors[J]. Guizhou Agricultural Sciences,2010,38(12):77−79. doi: 10.3969/j.issn.1001-3601.2010.12.024 REN M Q, ZHAO B, ZHAO G X, et al. Quality of green tea from different leaf position on new shoots and its influence factors[J]. Guizhou Agricultural Sciences, 2010, 38(12): 77-79. doi: 10.3969/j.issn.1001-3601.2010.12.024
[20] 王跃华, 张丽霞, 孙其远. 钙过量对茶树光合特性及叶绿体超微结构的影响[J]. 植物营养与肥料学报,2010,16(2):432−438. [WANG Y H, ZHANG L X, SUN Q Y, et al. Effects of excessive calcium fertilization on photosynthetic characteristics and chloroplast ultra-structure of tea tree[J]. Plant Nutrition and Fertilizer Science,2010,16(2):432−438. doi: 10.11674/zwyf.2010.0226 WANG Y H, ZHANG L X, SUN Q Y, et al. Effects of excessive calcium fertilization on photosynthetic characteristics and chloroplast ultra-structure of tea tree[J]. Plant Nutrition and Fertilizer Science, 2010, 16(2): 432-438. doi: 10.11674/zwyf.2010.0226
[21] 张建, 杨瑞东, 陈蓉, 等. 贵州遵义辣椒矿质元素含量与其品质相关性分析[J]. 食品科学,2018,39(10):215−221. [ZHANG J, YANG R D, CHEN R, et al. Relationship between contents of mineral elements and quality of hot pepper grown in Zunyi, Guizhou Province[J]. Food Science,2018,39(10):215−221. doi: 10.7506/spkx1002-6630-201810033 ZHANG J, YANG R D, CHEN R, et al. Relationship between contents of mineral elements and quality of hot pepper grown in Zunyi, Guizhou Province [J]. Food Science, 2018, 39(10): 215-221. doi: 10.7506/spkx1002-6630-201810033
[22] 赖幸菲, 柏珍, 李智芳, 等. 三种砖茶品质生化成分的研究[J]. 食品工业科技,2012,33(8):374−376,379. [LAI X F, BAI Z, LI Z F, et al. Research of the biochemistry compositions of three kinds of brick tea[J]. Science and Technology of Food Industry,2012,33(8):374−376,379. LAI X F, BAI Z, LI Z F, et al. Research of the biochemistry compositions of three kinds of brick tea[J]. Science and Technology of Food Industry, 2012, 33( 8) : 374-376, 379.
[23] 许伟, 彭影琦, 张拓, 等. 绿茶加工中主要滋味物质动态变化及其对绿茶品质的影响[J]. 食品科学,2019,40(11):36−41. [XU W, PENG Y Q, ZHANG T, et al. Dynamic change of major taste substances during green tea processing and its impact on green tea quality[J]. Food Science,2019,40(11):36−41. doi: 10.7506/spkx1002-6630-20180518-275 XU W, PENG Y Q, ZHANG T, et al. Dynamic change of major taste substances during green tea processing and its impact on green tea quality[J]. Food Science, 2019, 40(11): 36-41. doi: 10.7506/spkx1002-6630-20180518-275
[24] 唐偲雨, 刘毅, 王晶, 等. 重庆地区茶叶矿质元素产地特性研究[J]. 食品科学,2013,34(2):227−230. [TANG S Y, LIU Y, WANG J, et al. Origin characteristics of tea from different areas in Chongqing based on mineral elements analysis[J]. Food Science,2013,34(2):227−230. TANG S Y, LIU Y, WANG J, et al. Origin characteristics of tea from different areas in Chongqing based on mineral elements analysis[J]. Food Science, 2013, 34(2): 227-230.
[25] 孙景, 张霁, 赵艳丽, 等. ICP-MS法测定云南野生茯苓中矿质元素含量[J]. 食品科学,2016,37(14):68−73. [SUN J, ZHANG J, ZHAO Y L, et al. Determination of mineral elements of wild wolfiporia extensa collected from Yunnan by ICP-MS[J]. Food Science,2016,37(14):68−73. doi: 10.7506/spkx1002-6630-201614012 SUN J, ZHANG J, ZHAO Y L, et al. Determination of mineral elements of wild wolfiporia extensa collected from Yunnan by ICP-MS[J]. Food Science, 2016, 37(14): 68-73. doi: 10.7506/spkx1002-6630-201614012