• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

橄榄苦苷的生物活性研究进展

汪浅, 葛怡青, 仝涛

汪浅,葛怡青,仝涛. 橄榄苦苷的生物活性研究进展[J]. 食品工业科技,2022,43(19):479−486. doi: 10.13386/j.issn1002-0306.2021110063.
引用本文: 汪浅,葛怡青,仝涛. 橄榄苦苷的生物活性研究进展[J]. 食品工业科技,2022,43(19):479−486. doi: 10.13386/j.issn1002-0306.2021110063.
WANG Qian, GE Yiqing, TONG Tao. Research Progress on Bioactivities of Oleuropein[J]. Science and Technology of Food Industry, 2022, 43(19): 479−486. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110063.
Citation: WANG Qian, GE Yiqing, TONG Tao. Research Progress on Bioactivities of Oleuropein[J]. Science and Technology of Food Industry, 2022, 43(19): 479−486. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110063.

橄榄苦苷的生物活性研究进展

基金项目: 山东省自然科学基金项目(ZR2021QC118);北京市自然科学基金项目(7222249);中国农业大学2115人才工程资助项目。
详细信息
    作者简介:

    汪浅(2000−),女,本科,研究方向:食品科学与工程,E-mail:wangwangqian1002@sina.com

    通讯作者:

    仝涛(1988−),男,博士,副教授,研究方向:营养与食品安全,E-mail:tongtao1028@cau.edu.cn

  • 中图分类号: TS201.4

Research Progress on Bioactivities of Oleuropein

  • 摘要: 橄榄苦苷是一种具有天然裂环烯醚萜苷骨架的多酚化合物,具有抗氧化、抗炎和抗凋亡等生物活性,可以调节机体代谢、调控基因表达、改变酶活性,从而对高血糖、高血压、高血脂、肥胖及癌症等人类常见疾病有改善效果,且对多种器官具有保护修复作用。本文对橄榄苦苷生物活性功能的最新研究进展进行归纳总结和比对分析,以期对橄榄苦苷在食品、医疗及保健产品中的开发应用提供依据。
    Abstract: Oleuropein is a natural cleaved cyclic enol ether glucoside polyphenolic compound, which has bioactivities such as antioxidant, anti-inflammatory, and anti-apoptotic. It can improve human chronic diseases such as hyperglycemia, hypertension, hyperlipidemia, obesity, and cancer by regulating body metabolism, modulating gene expression and changing enzyme activity. At the same time, it has a protective and restorative effect on various organs. This article summarizes and compares the latest research on the bioactivities of oleuropein, with the aim of providing a scientific evidence for the development and application of oleuropein in food, medicine, and health products.
  • 油橄榄(Olea europaea L.)是木犀科木犀榄属植物,多产于欧洲南部地中海沿岸的国家,是地中海型的亚热带树种。油橄榄对引种地气候适生性的要求较高,我国的适生区域有限,甘肃省陇南市[1]、四川省凉山州[2]等地在油橄榄种植上具有得天独厚的地理优势。随着油橄榄种植产业的发展,每年有大量油橄榄叶被弃用,造成极大程度的资源浪费。早在数千年前,油橄榄叶便在地中海地区作为民间医药被广泛使用,可治疗多种疾病[3]。油橄榄叶所具有的药理活性主要来源于其含有的多酚化合物,油橄榄叶提取物中活性成分以橄榄苦苷(Oleuropein,OLE)含量最高[4]。橄榄苦苷是一种具有天然裂环烯醚萜苷骨架的多酚化合物,可以被机体吸收利用[5-7],其安全性已在动物实验[8]和临床研究[5,9]中得到证实。以往有综述总结了橄榄苦苷的抗氧化和抗炎等基本生物活性。近年来,橄榄苦苷被应用于一些疾病的研究之中,如代谢类疾病、器官损伤和癌症等[10-11]。这些研究都表明橄榄苦苷具有优异的生物活性。虽然目前已有市售的橄榄苦苷片以供人们选择,但橄榄苦苷在食品和药品领域的开发和应用仍然处于起步阶段。

    因此,本文就橄榄苦苷的抗氧化、抗炎、抗癌、器官保护、降血糖、降血压、降血脂、抗肥胖和皮肤修复等生物活性及其作用机制的最新文献进行了分析和总结,以期为橄榄苦苷在功能食品和生物医药等领域更广泛的开发和应用提供依据。

    橄榄苦苷,又称橄榄油苷、齐墩果苷,是一种棕黄色的水溶性粉末。橄榄苦苷由羟基酪醇、橄榄酸和一个葡萄糖残基组成[10],其化学结构如图1所示。

    图  1  橄榄苦苷的化学结构
    注:红色、绿色和黑色分别代表羟基酪醇、橄榄酸和葡萄糖苷部分。
    Figure  1.  Chemical structure of oleuropein

    橄榄苦苷的含量主要受其来源和提取方法的影响。橄榄苦苷的提取方法包括常规和非常规两大类。常规的提取方法包括冷溶剂提取法、溶剂萃取法和索氏提取法。非常规萃取方法包括超声辅助萃取、液-液萃取、微波辅助萃取、膜萃取、加压流体萃取、红外辅助萃取、超临界流体萃取、微流体系统萃取、酸水解和固液萃取[12-13]表1展示了橄榄苦苷来源和含量的部分信息。橄榄苦苷的来源主要有油橄榄叶提取物、油橄榄叶、油橄榄果实、油橄榄果核和油橄榄根茎等。其中油橄榄叶提取物中橄榄苦苷的含量较高,含量范围为15.66~905.96 mg/g(干重)。另外,各个文献中测定的橄榄苦苷的含量差异较大,这可能和原料采集的地区和采集时间,以及提取方法不同有关。

    表  1  橄榄苦苷的来源与含量
    Table  1.  Source and content of oleuropein
    来源方法产地采集时间含量参考文献
    油橄榄叶提取物溶剂萃取法土耳其/12.36%~15.89%[14]
    油橄榄叶提取物超声辅助提取法西班牙哈恩2016年25.78 mg/g (干重)[15]
    油橄榄叶提取物固液萃取法//115.01 mg/g (干重)[16]
    油橄榄叶提取物溶剂萃取法突尼斯东南部(斯法克斯省)/905.96 mg/g (干重)[17]
    油橄榄叶提取物/西班牙穆尔西亚/16.70%[18]
    油橄榄叶提取物溶剂萃取法突尼斯南部(斯法克斯省)/64.00%[19]
    油橄榄叶提取物微波辅助萃取法巴西南里奥格兰德2017年6月下旬14.47 mg/g (干重)[20]
    油橄榄叶提取物溶剂萃取法土耳其艾瓦勒克/15.66 mg/g (干重)[21]
    油橄榄叶微波辅助萃取法西班牙卡斯蒂利亚拉曼恰2018年6月42.50~91.01 mg/g (干重)[22]
    油橄榄叶超声辅助提取法/2月至7月4.39~59.74 mg/g (干重)[23]
    油橄榄叶/意大利泰拉莫/1193~1286 mg/kg (干重)[24]
    油橄榄果实冷溶剂提取法意大利佛罗伦萨2019年夏季60~100 mg/g (干重)[25]
    油橄榄果实超声辅助溶剂萃取法西班牙巴达霍斯2014~2015 年7.40~110.20 mg/kg (鲜重)[26]
    油橄榄果核固液萃取法土耳其马尼萨/3.06~36.99 mg/kg (干重)[13]
    油橄榄根茎溶剂萃取法//150.11~1848.41 mg/kg (鲜重)[27]
    下载: 导出CSV 
    | 显示表格

    橄榄苦苷具有多种生物活性,可以参与机体代谢过程,对多种常见病症有缓解和治疗作用。目前已有文献对橄榄苦苷的抗氧化、抗炎、抗癌、器官保护、降血糖、降血压、降血脂、抗肥胖和皮肤修复等方面进行了综述。本文在原有文献的基础上对最新的研究成果进行了综述,展现橄榄苦苷生物活性的研究现状。

    生物体因与外界的持续接触,包括呼吸、光照等因素都会不断地在体内产生自由基。橄榄苦苷分子中二羟基苯基团结构的存在,有助于提供电子,能有效清除DPPH自由基[28]。总抗氧化能力测定结果表明,橄榄苦苷的半抑制浓度为(0.075±0.002)mg/mL,具有强大的抗氧化性[29]。细胞研究结果表明橄榄苦苷可以抑制过氧化氢诱导的PC2细胞内超氧化物歧化酶(Superoxide dismutase,SOD)及谷胱甘肽过氧化物酶活力的降低[30]。动物实验结果也显示橄榄苦苷具有抗氧化功效。例如,经每天灌胃100 mg/kg橄榄苦苷处理的小鼠,检测衰老相关生化指标,其心、肝和脑组织中SOD、谷胱甘肽过氧化物酶和端粒酶活性增强,丙二醛(Malondialdehyde,MDA)含量降低,血清中免疫球蛋白含量提高。橄榄苦苷能通过拮抗自由基损伤,增强衰老小鼠心、肝、脑组织活性,提升机体免疫功能,发挥抗衰老作用[31]

    炎症反应是身体对外部有害因素的一种自我防御,受免疫系统调节,过度的炎症会导致一系列进行性人类疾病[32]。已有研究显示,橄榄苦苷可以降低白细胞介素1α、白细胞介素2、肿瘤坏死因子α和粒细胞集落刺激因子细胞因子等炎症相关指标[33]。最新的研究结果也表明橄榄苦苷可以显著降低脂多糖(Lipopolysaccharide,LPS)诱导的心肌细胞血清肿瘤坏死因子α和一氧化氮合酶的表达[34]。LPS诱导的脓毒症小鼠经过腹腔注射橄榄苦苷的预处理,检测到其肝肾组织中促炎细胞因子和炎症相关基因的表达被抑制,且炎症反应减轻,橄榄苦苷可保护小鼠免受LPS诱导的脓毒症的侵害,提高脓毒症小鼠的存活率[35]。另外,橄榄苦苷可显著降低患有牙周炎大鼠的炎症细胞和一氧化氮合酶含量,改善了牙周炎[36]。LPS诱导的单核巨噬细胞经橄榄苦苷(10、20、40 μmol/L)预处理,其亚硝酸盐释放水平受到显著抑制,诱导型一氧化氮合成酶和环氧化酶2的表达显著降低,一氧化氮的产生显著减少[37]。在以上实验中都检测到细胞或动物体经橄榄苦苷处理后其一氧化氮合酶的活性和数量显著降低,可以认为抑制一氧化氮合酶的表达是橄榄苦苷抗炎的一条有效途径,但具体的作用机制缺乏深入研究,可以作为未来着重探讨的方向。

    受人口老龄化、环境污染、不良生活习惯和膳食结构变化等因素的影响,癌症已成为全世界共同面临的重大公共健康问题[38]。橄榄苦苷可能通过调节参与肿瘤形成过程的几种生长因子、细胞因子、黏附分子和酶的活性,阻止肿瘤细胞增殖,诱导细胞周期发生显著变化,促进细胞凋亡[39]。最近,多项研究发现橄榄苦苷对不同类型的人类肿瘤具有化学防治作用。一方面,橄榄苦苷可以抑制癌细胞活动,例如,抑制HepG2人肝癌细胞的迁移与侵袭[40]:在细胞划痕实验中测定橄榄苦苷组细胞迁移距离为(51±4.1)μm,对照组迁移距离为(181±4.6)μm,在Transwell实验中检测到橄榄苦苷组穿膜小孔的细胞数为(21±1)个,对照组为(63±4)个;抑制人胃癌细胞的克隆形成[41]:橄榄苦苷通过降低STAT3的磷酸化水平,明显抑制SGC-7901细胞的增殖、克隆形成及迁移侵袭能力。另一方面,橄榄苦苷通过调控基因的表达,对癌细胞有抑制作用,例如,显著降低人卵巢癌细胞原癌基因(miR-21)的表达、提升抑癌基因(miR-34amiR-125bmiR16)的表达[42];通过调节B淋巴细胞瘤-2及其基因相关启动子的表达促进人前列腺癌PC-3细胞凋亡[43];通过降低miR-194和PD-L1水平、增加XIST水平而对乳腺癌细胞有抑制作用[44]。这些体外研究清楚地表明橄榄苦苷对特定的癌细胞具有显著抑制作用,但癌症作为一种多因素导致的恶性疾病,橄榄苦苷所具有的抗癌活性仍需要更可靠的体内研究来证实。

    有多篇报道均发现橄榄苦苷可以缓解非酒精性脂肪肝(Non-alcoholic fatty liver disease,NAFLD)。例如,橄榄苦苷能降低NAFLD小鼠肝脏中SOD2和过氧化氢酶的表达和活性,通过恢复氧化还原平衡来改善肝损伤[45]。Arciello等[46]对NAFLD小鼠进行免疫分析,检测到单核细胞趋化蛋白1和趋化因子配体1显著减少,表明橄榄苦苷可以抑制肝脏中的免疫细胞浸润,阻止肝损伤的恶化。还有研究发现高脂饮食导致的NAFLD雌性小鼠在饮用含橄榄苦苷(3%)的饮用水8 周后,肝脏中苏氨酸蛋白激酶磷酸化增加,肝脏脂肪变性得到了改善[47]

    橄榄苦苷对肾脏疾病引起的肾损伤有保护作用。单侧输尿管梗阻的大鼠经橄榄苦苷(50、100和200 mg/kg)治疗3 d后,观察到肾小管间质损伤和肾小管坏死有所改善,MDA水平降低,SOD活性提高[48]。橄榄苦苷还可以对肾脏缺血再灌注损伤有一定保护作用,经橄榄苦苷(50 mg/kg)灌胃处理的大鼠表现为血浆肌酐、尿素、尿酸浓度和乳酸脱氢酶活性显著降低,肾脏AMP活化蛋白激酶的磷酸化和内皮型一氧化氮合酶的表达增强,丝裂原活化蛋白激酶和cleaved caspase-3参与细胞凋亡减弱[49]。甘油诱导的急性肾损伤大鼠经橄榄苦苷(50 mg/kg)处理后,病变所导致的肾脏重量增加有所改善,乳酸脱氢酶等肾损伤指标降低,MDA水平和一氧化氮水平降低,超氧化物歧化酶、过氧化氢酶、谷胱甘肽过氧化物酶和谷胱甘肽还原酶活性及其基因表达提高[50]。综上,橄榄苦苷对肾脏的保护作用可能与其抗氧化、抗炎和抗凋亡能力有关。

    脑血管疾病是威胁到人类健康的重大因素,同时,大脑神经元活动影响着人类的认知和理解能力。橄榄苦苷对脑损伤以及脑神经凋亡有一定改善效果。Kais等[51]发现橄榄苦苷治疗可减轻中风大鼠脑水肿,缓解低钠血症,显著降低血浆纤维蛋白原和心脏功能紊乱酶的表达,改善脑组织氧化应激状态。此外,电子分析显示血管紧张素转化酶、蛋白质二硫键异构酶的表达明显降低,这表明橄榄苦苷具有有效的抗栓塞特性。脑缺血会导致多方面的脑损伤。一方面是缺血再灌注损伤,橄榄苦苷可通过改善神经功能、减少自由基损伤和抑制炎症因子水平,对小鼠脑缺血再灌注损伤具有明显的保护作用[52];另一方面是神经凋亡、甚至脑梗死,橄榄苦苷可以使调控细胞凋亡的切割蛋白酶cleaved-caspase-3的表达明显降低,抑制神经凋亡,改善脑动脉缺血小鼠的神经行为学评分,减小脑梗死体积[53]。此外,橄榄苦苷还可降低吗啡所致大鼠海马CA1区神经元凋亡和氧化应激水平,改善学习和记忆障碍[54]

    糖尿病是一种因代谢问题而引起的常见疾病,其特征是机体存在胰岛β细胞损伤或胰岛素抵抗。目前,已有研究表明橄榄苦苷具有良好的降低高血糖的作用。例如,Zheng等[55]发现橄榄苦苷可改善患有晚期2型糖尿病的db/db小鼠的高血糖症和葡萄糖耐受;作者对17周龄的糖尿病小鼠进行了剂量为200 mg/kg的橄榄苦苷灌胃治疗15周,检测到小鼠肠道微生物菌群(如脱铁杆菌)的相对丰度有所改变。因此,橄榄苦苷可能通过调节肠道微生物群的组成和功能来改善晚期2型糖尿病。类似地,自发性糖尿病小鼠经橄榄苦苷治疗后,空腹血糖显著降低,肝糖原含量显著升高,口服糖耐量试验120 min血糖显著降低,抑制糖异生关键酶的表达和改善胰岛素抵抗[56]。除此之外,橄榄苦苷还可抑制胰岛淀粉样多肽聚集,减轻细胞毒性,从而对胰岛β细胞有保护作用[57]。橄榄苦苷对妊娠型糖尿病也有改善效果。以5或10 mg/kg/d的剂量向妊娠糖尿病小鼠施用橄榄苦苷,检测到妊娠糖尿病小鼠体重的增加量和血糖降低、胰岛素和肝糖原水平升高。橄榄苦苷可能通过激活腺苷酸活化蛋白激酶的信号通路减轻氧化应激和炎症,有效缓解妊娠糖尿病症状[58]。人体研究中也证实了橄榄苦苷具有降血糖功能。健康受试者在午餐前服用20 mg橄榄苦苷后二肽基肽酶-4活性明显降低,抑制升糖素、促进胰岛素分泌,餐后血糖明显降低。之后进行体外研究,发现其作用机制为橄榄苦苷通过抑制还原型辅酶Ⅱ氧化酶-2衍生的氧化应激来改善餐后血糖水平[59]。综上,橄榄苦苷的降糖功效在动物水平已有较多研究,对于高血糖患者的临床治疗效果需在今后的试验中继续探讨。

    近年来,高脂症发病率逐年上升,由此引发的动脉粥样硬化等心脑血管疾病对人类健康造成威胁。临床上虽有他汀类、贝特类等降脂药,但长期用药可能会带来毒副作用[60]。橄榄苦苷作为一种安全性高的天然活性物质,具有良好清除自由基和抑制低密度脂蛋白氧化的能力,从而能降血脂,有效预防心血管疾病的发生。Malliou等[61]发现橄榄苦苷可以降低小鼠血清中甘油三酯和胆固醇水平,其作用机制是橄榄苦苷通过激活过氧化物酶体增殖物激活受体α,对血清甘油三酯的稳态产生有益影响。用双酚A诱导增加体重和脂肪组织质量的雄性大鼠经过口服橄榄苦苷治疗,检测到其血脂水平降低,蛋白免疫印迹实验结果显示,橄榄苦苷通过p38信号途径,降低了核因子κB和肿瘤坏死因子α的蛋白表达,从而达到降血脂的效果[62]。构建载脂蛋白E基因敲除小鼠模型,给予500或1000 mg/kg的油橄榄叶提取物(有效成分橄榄苦苷含量达到53%),结果显示载脂蛋白E基因敲除小鼠的三酰甘油、总胆固醇、低密度脂蛋白胆固醇和超低密度脂蛋白胆固醇水平显著降低,其作用机制可能与橄榄苦苷调节脂质代谢、改善胰岛素抵抗有关,也可能与其能够抑制糖原动员、糖异生有关[63]

    人们生活方式的改变以及饮食习惯的变化,导致高血压疾病的多发。高血压是一种慢性疾病,如果得不到良好控制,可引发心脑血管疾病和肾病变等高血压并发症[64]。现有的研究结果表明,橄榄苦苷具有良好的改善高血压的功效。例如,自发性高血压小鼠接受100 mg/kg橄榄苦苷灌胃给药后,血压显著降低[65]。Sonja等[66]发现橄榄苦苷可以使大鼠离体胸主动脉血管扩张,从而具有降血压效果,此作用依赖于橄榄苦苷引起内皮细胞释放一氧化氮。有研究表明,高血压与下丘脑室旁核活性氧生成的增加有关。对自发性高血压大鼠每日给予60 mg/kg的橄榄苦苷治疗8周后,检测到血压显著降低。进一步探究发现橄榄苦苷通过激活核因子E2相关因子介导的信号通路,改善线粒体功能,保护下丘脑室旁核免受氧化应激作用,降低肾素-血管紧张素的表达,从而降低血压[67]

    肥胖影响健康,我国是肥胖人群数量增长最迅速的国家之一[68]。目前抗肥胖药物非常有限且伴随不良反应,寻找天然可食用、具有抗肥胖活性的物质是一条有效解决途径。已有研究结果显示橄榄苦苷具有抑制肥胖的作用,且对肥胖的抵抗涉及多种作用机制。比如,橄榄苦苷通过改善胰岛素敏感性,提升葡萄糖的转运效率,阻止由高血糖引起的腹部脂肪堆积[69]。还可通过调控几种循环代谢的因子,缓解代谢紊乱,减缓高脂饮食导致的体重增加[47]。基因层面的研究表明,橄榄苦苷通过上调Wnt10b介导的信号转导相关基因和下调甘丙肽介导的信号级联相关基因,降低内脏脂肪的含量[70]。此外,Inge等[71]发现在小鼠高脂饮食中补充橄榄苦苷可以提高运动能力,减小脂肪细胞体积。进一步研究认为这种作用可能与饱腹感信号的增加有关。

    在橄榄苦苷的皮肤渗透性实验,发现其在皮肤层总沉积量高达95.67%,故对银屑病患者进行了临床实验。银屑病患者经橄榄苦苷涂抹治疗后,银屑病面积和严重程度指数均下降,皮肤受损程度降低。橄榄苦苷的作用效果甚至优于市面上的多种皮卵酸霜[72]。在评价橄榄苦苷生发效果的实验中,每日给予小鼠局部涂抹橄榄苦苷(0.4 mg)处理,发现其可加速毛发生长,并扩大小鼠皮肤上的毛囊。进一步的分子机制研究显示,橄榄苦苷的毛发生长促进作用可能与刺激Wnt10b和β连环蛋白信号通路以及小鼠皮肤组织中某些促生长基因的表达有关[73]。橄榄苦苷可与酪氨酸酶结合,使最大酶促反应速率降低从而抑制酪氨酸酶的活性。200 μmol/L的橄榄苦苷对B16细胞酪氨酸酶活性的抑制率为33.41%±3.74%[74]。酪氨酸酶是黑色素合成过程中的关键酶,通过抑制酪氨酸酶的活性,可以抑制黑色素的生成,进而达到美白的功效[75]。综上,这些研究可为橄榄苦苷作为美白护肤和生发产品的开发和利用提供理论依据。

    本文对橄榄苦苷的生物活性进行了归纳总结,橄榄苦苷的抗氧化、抗炎和抗凋亡能力是其发挥生物功能的基础,同时,调控基因表达、调节代谢因子和改变酶活性,使橄榄苦苷在降血糖、降血压、降血脂、抗肥胖、抗肿瘤和保护器官上具有一定的效果。橄榄苦苷的研究面临以下问题和挑战:a. 多数文献只探讨了橄榄苦苷的作用效果,其具体分子机制仍需要深入研究。b. 临床试验相对缺乏,橄榄苦苷对人体的作用效果尚无完整的评价体系。c. 橄榄苦苷的分子结构中含有多种基团,各类官能团的相互作用与生物功能间的关系值得探讨,可以为研发合成有机化合物提供参考。此外,橄榄苦苷在以下方面有乐观的前景:a. 在细胞实验中,橄榄苦苷的抗癌效果显著,应在动物实验中进一步验证。b. 橄榄苦苷可以调节机体代谢,对血糖、血压、血脂和肥胖等代谢类疾病有改善效果,可以研发含橄榄苦苷的饮品或保健品。c. 橄榄苦苷缓解皮炎和美白的功效已有初步研究,由于近年来消费者对护肤产品关注度的愈发提升,橄榄苦苷可以作为有效成分添加至护肤产品中。

    综上,未来需要从更深层面挖掘橄榄苦苷的价值,将橄榄苦苷应用于食品、保健品以及护肤品等产品中,促进橄榄苦苷资源的合理利用,推动膳食、医疗和保健事业蓬勃健康发展。

  • 图  1   橄榄苦苷的化学结构

    注:红色、绿色和黑色分别代表羟基酪醇、橄榄酸和葡萄糖苷部分。

    Figure  1.   Chemical structure of oleuropein

    表  1   橄榄苦苷的来源与含量

    Table  1   Source and content of oleuropein

    来源方法产地采集时间含量参考文献
    油橄榄叶提取物溶剂萃取法土耳其/12.36%~15.89%[14]
    油橄榄叶提取物超声辅助提取法西班牙哈恩2016年25.78 mg/g (干重)[15]
    油橄榄叶提取物固液萃取法//115.01 mg/g (干重)[16]
    油橄榄叶提取物溶剂萃取法突尼斯东南部(斯法克斯省)/905.96 mg/g (干重)[17]
    油橄榄叶提取物/西班牙穆尔西亚/16.70%[18]
    油橄榄叶提取物溶剂萃取法突尼斯南部(斯法克斯省)/64.00%[19]
    油橄榄叶提取物微波辅助萃取法巴西南里奥格兰德2017年6月下旬14.47 mg/g (干重)[20]
    油橄榄叶提取物溶剂萃取法土耳其艾瓦勒克/15.66 mg/g (干重)[21]
    油橄榄叶微波辅助萃取法西班牙卡斯蒂利亚拉曼恰2018年6月42.50~91.01 mg/g (干重)[22]
    油橄榄叶超声辅助提取法/2月至7月4.39~59.74 mg/g (干重)[23]
    油橄榄叶/意大利泰拉莫/1193~1286 mg/kg (干重)[24]
    油橄榄果实冷溶剂提取法意大利佛罗伦萨2019年夏季60~100 mg/g (干重)[25]
    油橄榄果实超声辅助溶剂萃取法西班牙巴达霍斯2014~2015 年7.40~110.20 mg/kg (鲜重)[26]
    油橄榄果核固液萃取法土耳其马尼萨/3.06~36.99 mg/kg (干重)[13]
    油橄榄根茎溶剂萃取法//150.11~1848.41 mg/kg (鲜重)[27]
    下载: 导出CSV
  • [1] 杨永兴, 张军, 张正武, 等. 陇南市油橄榄产业对区域经济增长的实践分析[J]. 中国食品,2021(17):120−121. [YANG Y X, ZHANG J, ZHANG Z W, et al. Practice analysis on the regional economic growth of olive industry in Longnan[J]. China Food,2021(17):120−121. doi: 10.3969/j.issn.1000-1085.2021.17.050

    YANG Y X, ZHANG J, ZHANG Z W, et al. Practice analysis on the regional economic growth of olive industry in Longnan[J]. China Food, 2021(17): 120-121. doi: 10.3969/j.issn.1000-1085.2021.17.050

    [2] 王碧霞, 杜小奇, 邓燕, 等. 凉山主栽品种油橄榄叶中营养物质和酚类含量的季节性变化[J]. 南京林业大学学报(自然科学版),2022,46(4):169−176. [WANG B X, DU X Q, DENG Y, et al. Seasonal variations of the nutrients and phenols from olive leaves in main cultivation varieties at Liangshan[J]. Journal of Nanjing Forestry University (Natural Sciences Edition),2022,46(4):169−176.

    WANG B X, DU X Q, DENG Y, et al. Seasonal variations of the nutrients and phenols from olive leaves in main cultivation varieties at Liangshan[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(4): 169-176.

    [3]

    PAULO F, SANTOS L. Deriving valorization of phenolic compounds from olive oil by-products for food applications through microencapsulation approaches: A comprehensive review[J]. Critical Reviews in Food Science and Nutrition,2020,61:1−26.

    [4] 王碧霞. 油橄榄叶提取物生物活性研究进展[J]. 绿色科技,2017(14):278−282. [WANG B X. Research progress on bioactivities of olea europaea leaf extract[J]. J Green Sci Tech,2017(14):278−282.

    WANG B X. Research progress on bioactivities of olea europaea leaf extract[J]. J Green Sci Tech, 2017(14): 278-282.

    [5]

    MARTIN B, ERIC B, DERRAIK G B, et al. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract[J]. Mol Nutr Food Res,2013,57(11):2079−2085. doi: 10.1002/mnfr.201200795

    [6]

    VISIOLI F, GALLI C, BORNET F, et al. Olive oil phenolics are dose-dependentlyabsorbed in humans[J]. FEBS Lett,2000,468:159−160. doi: 10.1016/S0014-5793(00)01216-3

    [7]

    HAZAS M L, PIOL C, MACI A, et al. Differential absorption and metabolism of hydroxytyrosol and its precursors oleuropein and secoiridoids[J]. J Funct Foods,2016,22:52−63. doi: 10.1016/j.jff.2016.01.030

    [8]

    PETKOV V, MANOLOV P. Pharmacological analysis of the iridoid oleuropein[J]. Arzneimittel-Forsch,1972,22(9):1476−1486.

    [9]

    ENDANG S, NAFRIALDI A, IMAM E, et al. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: Comparison with captopril[J]. Phytomedicine,2011,18(4):251−258. doi: 10.1016/j.phymed.2010.08.016

    [10]

    ZHENG S J, HUANG K L, TONG T. Efficacy and mechanisms of oleuropein in mitigating diabetes and diabetes complications[J]. J Agric Food Chem,2021,69:6145−6155. doi: 10.1021/acs.jafc.1c01404

    [11]

    JAVED A, IBRAHIM T, AHMED K M, et al. Oleuropein: A natural antioxidant molecule in the treatment of metabolic syndrome[J]. Phytotherapy Res,2019,33(12):3112−3128. doi: 10.1002/ptr.6511

    [12]

    DEBORAH M O, FERNANDA M O, ALEXANDRE L, et al. Oleuropein: Methods for extraction, purifying and applying[J]. Rev Ceres,2020,67(4):315−329. doi: 10.1590/0034-737x202067040009

    [13]

    EMINE N, SEMIH O. The optimization of solid-liquid extraction of polyphenols from olive stone by response surface methodology[J]. J Food Measurement and Characterization,2019,13(2):1497−1507. doi: 10.1007/s11694-019-00065-z

    [14]

    GZELMERIC E, EVIK D, YEILADA E. Quality assessment of marketed food supplements and herbal tea products of olive leaf in Turkey[J]. J Res Pharm,2020,24:1−11.

    [15]

    CONTRERAS M M, LAMA A, ESPNOLA F, et al. Valorization of olive mill leaves through ultrasound-assisted extraction[J]. Food Chem,2020:314.

    [16]

    HUGUET A, LPEZ T B, GAINZA E, et al. Development and validation of an eco-friendly HPLC-DAD method for the determination of oleuropein and its applicability to several matrices: Olive oil, olive leaf extracts and nanostructured lipid carriers[J]. Green Chem,2020(22):3495−3505.

    [17]

    FKI I, SAYADI S, MAHMOUDI A, et al. Comparative study on beneficial effects of hydroxytyrosol- and oleuropein-rich olive leaf extracts on high-fat diet-induced lipid metabolism disturbance and liver injury in rats[J]. Biomed Res Int,2020,2020:1315202.

    [18]

    STEVENS Y, WINKENS B, JONKERS D, et al. The effect of olive leaf extract on cardiovascular health markers: A randomized placebo-controlled clinical trial[J]. Eur J Nutr,2020,60(4):2111−2120.

    [19]

    JEMAI H, MAHMOUDI A, FERYENI A, et al. Hepatoprotective effect of oleuropein-rich extract from olive leaves against cadmium-induced toxicity in mice[J]. Biotech Week,2020,2020:4398924.

    [20]

    DA G S, VANGA S K, GARIEPY Y, et al. Development of biodegradable films with improved antioxidant properties based on the addition of carrageenan containing olive leaf extract for food packaging applications[J]. J Polym Environ,2020,28(1):123−130. doi: 10.1007/s10924-019-01589-7

    [21]

    KURTULBAS E, YAZAR S, ORTABOY S, et al. Evaluation of the phenolic antioxidants of olive (Olea europaea) leaf extract obtained by a green approach: Use of reduced graphene oxide for electrochemical analysis[J]. Chem Eng Commun,2020,207:920−932. doi: 10.1080/00986445.2019.1630397

    [22]

    MAETNEZ E M, CEBRIN C, MORATALLA N, et al. Development and validation of an HPLC-DAD method for determination of oleuropein and other bioactive compounds in olive leaf by-products[J]. J Sci Food Agric,2020,101:1447−1453.

    [23]

    PASKOVI I, HERAK M, PECINA M, et al. Manganese soil and foliar fertilization of olive plantlets: The effect on leaf mineral and phenolic content and root mycorrhizal colonization[J]. J Sci Food Agric,2019,99:360−367. doi: 10.1002/jsfa.9196

    [24]

    ROJAS D, DELLA P F, DEL CARLO M, et al. Nanohybrid carbon black-molybdenum disulfide transducers for preconcentration-free voltammetric detection of the olive oil o-diphenols hydroxytyrosol and oleuropein[J]. MCA Acta,2019,186:363.

    [25]

    CECCHI L, GUERRINI L, BELLUMORI M, et al. Optimization of the production process of dried unripe olives (Olea europaea L.) as a nutraceutical ingredient naturally rich in phenolic compounds[J]. LWT-Food Sci Technol,2020,129:109569. doi: 10.1016/j.lwt.2020.109569

    [26]

    CABRERA M, SCHAIDE T, MANZANO R, et al. Optimization and validation of a rapid liquid chromatography method for determination of the main polyphenolic compounds in table olives and in olive paste[J]. Food Chem,2017,233:164−173. doi: 10.1016/j.foodchem.2017.04.052

    [27]

    MECHRI B, TEKAYA M, ATTIA F, et al. Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots[J]. Plant Physiol Bioch,2020,156:178−191.

    [28]

    THAMMARAT A, SUCHADA J. Structure-antioxidant activity relationship of β-cyclodextrin inclusion complexes with olive tyrosol, hydroxytyrosol and oleuropein: Deep insights from X-ray analysis, DFT calculation and DPPH assay[J]. Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides,2018,199:661−669.

    [29] 吴遵秋, 姜友军, 苏光灿, 等. 油橄榄叶中橄榄苦苷的体外抗氧化和抑菌活性[J]. 食品科学,2014,35(21):94−99. [WU Z Q, JIANG Y J, SU G C, et al. Antioxidant and antimicrobial activities of oleuropein in vitro[J]. Food Chem,2014,35(21):94−99. doi: 10.7506/spkx1002-6630-201421019

    WU Z Q, JIANG Y J, SU G C, et al. Antioxidant and antimicrobial activities of oleuropein in vitro[J]. Food Chem, 2014, 35(21): 94-99. doi: 10.7506/spkx1002-6630-201421019

    [30] 李文杰, 李静. 橄榄苦苷对H2O2诱导的PC12氧化应激损伤的保护作用[J]. 中医药学报,2019,47(3):37−41. [LI W J, LI J. Effect of oleuropein against H2O2-induced oxidative stress damage in PC12[J]. Journal of Traditional Chinese Medicine,2019,47(3):37−41.

    LI W J, LI J. Effect of oleuropein against H2O2-induced oxidative stress damage in PC12[J]. Journal of Traditional Chinese Medicine, 2019, 47(3): 37-41.

    [31] 王昱, 秦序. 橄榄苦苷对D-半乳糖致衰老小鼠衰老相关生化指标的影响[J]. 安徽农业大学学报,2016,43(1):17−20. [WANG Y, QIN X. Effect of oleuropein on the aging related biochemical indexes in aging mice induced by D-galactose[J]. Journal of Anhui Agricultural University,2016,43(1):17−20.

    WANG Y, QIN X. Effect of oleuropein on the aging related biochemical indexes in aging mice induced by D-galactose[J]. Journal of Anhui Agricultural University, 2016, 43(1): 17-20.

    [32]

    SHAFIQUE K, MIRZA S S, VART P, et al. Areca nut chewing and systemic inflammation: Evidence of a common pathway for systemic diseases[J]. J Inflam,2012,9(1):22−30. doi: 10.1186/1476-9255-9-22

    [33]

    NEDIANI C, RUZZOLINI J, ROMANI A, et al. Oleuropein, a bioactive compound from Olea europaea L., as a potential preventive and therapeutic agent in non-communicable diseases[J]. Antioxidants,2019,8(12):578. doi: 10.3390/antiox8120578

    [34] 曹位平, 郭建淑, 冯文静, 等. 橄榄苦苷对缺血再灌注大鼠心肌应激性炎症损伤的保护作用[J/OL]. 中国免疫学杂志: 1−15. https://kns.cnki.net/kcms/detail/22.1126.R.20210930.1633.002.html

    CAO W P, GUO J S, FENG W J, et al. Protective effect of oleuropein on stress-induced inflammatory injury in myocardial ischemia-reperfusion rats[J]. Chinese Journal of Immunology: 1−15.

    [35]

    KHALAF F A, ABDULRAHEEM A, OSAMA A, et al. Oleuropein protects against lipopolysaccharide-induced sepsis and alleviates inflammatory responses in mice[J]. IUBMB Life,2020,72(10):2121−2132. doi: 10.1002/iub.2347

    [36]

    MURAT T M, HATICE B Y, OZKAN K, et al, Evaluation of the effect of oleuropein on alveolar bone loss, inflammation, and apoptosis in experimental periodontitis[J]. Journal of Periodonatal Research, 2019, 54(6): 624-632.

    [37] 韩珊, 王琴琴, 李新星, 等. 基于Nrf2/HO-1信号通路研究橄榄苦苷的体外抗炎作用[J]. 药物评价研究,2020,43(2):193−198. [HAN S, WANG Q Q, LI X X, et al. Oleuropein exerts anti-inflammatory effect in vitro via Nrf2/HO-1 signaling pathway[J]. Drug Evaluation Research,2020,43(2):193−198.

    HAN S, WANG Q Q, LI X X, et al. Oleuropein exerts anti-inflammatory effect in vitro via Nrf2/HO-1 signaling pathway[J]. Drug Evaluation Research, 2020, 43(2): 193-198.

    [38]

    SIEGEL R L, MILLER K D, DVM A J. Cancer statistics, 2019[J]. CA Cancer J Clin,2019,69:7−34. doi: 10.3322/caac.21551

    [39]

    GAETANO L, CARLA F, MARILENA C, et al. Effects of oleuropein on tumor cell growth and bone remodelling: Potential clinical implications for the prevention and treatment of malignant bone diseases[J]. Life Sci,2021:279.

    [40] 李天柱, 崔凤姬, 白雪, 等. 橄榄苦苷对肝癌HepG2细胞迁移和侵袭能力的影响[J]. 赤峰学院学报(自然科学版),2021,37(3):41−43. [LI T Z, CUI F J, BAI X, et al. Effect of oleuropein on the migration and invasion ability of hepatocellular carcinoma HepG2 cells[J]. Journal of Chifeng College (Natural Science Edition),2021,37(3):41−43.

    LI T Z, CUI F J, BAI X, et al. Effect of oleuropein on the migration and invasion ability of hepatocellular carcinoma HepG2 cells[J]. Journal of Chifeng College (Natural Science Edition), 2021, 37(3): 41-43.

    [41] 田凤. 橄榄苦苷对胃癌的抑制作用及分子机制研究[D]. 咸宁: 湖北科技学院, 2021.

    TIAN F. Research on the inhibitory effect and molecular mechanism of oleuropein on gastric cancer[D]. Xianning: Hubei University of Science and Technology, 2021.

    [42]

    SOMAYEH H S, ZEINAB A, SHIMA R, et al. Oleuropein reduces cisplatin resistance in ovarian cancer by targeting apoptotic pathway regulators[J]. Life Sci,2021:278.

    [43] 田凤, 龙梦晖, 宁志丰, 等. 橄榄苦苷对人前列腺癌PC-3细胞增殖、迁移侵袭及凋亡的影响[J]. 湖北科技学院学报(医学版),2021,35(4):289−291, 272. [TIAN F, LONG M H, NING Z F, et al. Effects of oleuropein on the proliferation, migration invasion and apoptosis of human prostate cancer PC-3 cells[J]. Journal of Hubei Science and Technology College (Medical Edition),2021,35(4):289−291, 272.

    TIAN F, LONG M H, NING Z F, et al. Effects of oleuropein on the proliferation, migration invasion and apoptosis of human prostate cancer PC-3 cells[J]. Journal of Hubei Science and Technology College(Medical Edition), 2021, 35(4): 289-291, 272.

    [44]

    HAMED M M, HANDOUSSA H, HUSSEIN N H, et al. Oleuropein controls miR-194/XIST/PD-L1 loop in triple negative breast cancer: New role of nutri-epigenetics in immune-oncology[J]. Life Sci,2021,277:119353. doi: 10.1016/j.lfs.2021.119353

    [45]

    SANTINI S J, PORCU C, TARANTINO G, et al. Antioxidant and anti-inflammatory effect of oleuropein in hepatic steatosis[J]. Digest Liver Dis,2020,52(Supl 1):e32.

    [46]

    ARCIELLO M, BARBARO B, LONGO A, et al. Oleuropein reduces inflammatory mediators and hepatic immune cells infiltration in a mouse model of NAFLD[J]. Digest Liver Dis,2015,47:e24.

    [47]

    CRISTIANA P, SILVIA S, MAURIZIO M, et al. Oleuropein induces AMPK-dependent autophagy in NAFLD mice, regardless of the gender[J]. Int J Mol Sci,2018,19(12):3948. doi: 10.3390/ijms19123948

    [48]

    AYAT K, ALI S, MOHAMMAD A, et al. The effect of oleuropein on unilateral ureteral obstruction induced-kidney injury in rats: The role of oxidative stress, inflammation and apoptosis[J]. Molecular Biology Reports,2020,47(2):1371−1379. doi: 10.1007/s11033-019-05237-0

    [49]

    NASRALLAH H, AISSA I, SLIM C, et al. Effect of oleuropein on oxidative stress, inflammation and apoptosis induced by ischemia-reperfusion injury in rat kidney[J]. Life Sciences,2020,255(C):117833.

    [50]

    YIN M, JIANG N, GUO L H, et al. Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats[J]. Life Sciences,2019,232(C):116634.

    [51]

    KAIS M, LAKHDAR G, RAOUF H, et al. Oleuropein protects against cerebral ischemia injury in rats: Molecular docking, biochemical and histological findings[J]. Neurochem Res,2021:1−12.

    [52] 王昱, 秦序. 橄榄苦苷对小鼠脑缺血再灌注损伤的保护作用[J]. 中国畜牧兽医,2016,43(9):2388−2394. [WANG Y, QIN X. Protective effect of oleuropein on cerebral ischemia-reperfusion injury in mice[J]. China Animal Husbandry and Medicine,2016,43(9):2388−2394.

    WANG Y, QIN X. Protective effect of oleuropein on cerebral ischemia-reperfusion injury in mice[J]. China Animal Husbandry and Medicine, 2016, 43(09): 2388-2394.

    [53] 于海龙, 姜超, 徐耀, 等. 橄榄苦苷对脑缺血再灌注损伤的神经保护作用[A]. 中华医学会第十七次全国神经病学学术会议论文汇编(下), 2014.

    YU H L, JIANG C, XU Y, et al. Neuroprotective effect of oleuropein on cerebral ischemia-reperfusion injury[A]. Compilation of papers from the 17th National Neurology Conference of the Chinese Medical Association, 2014.

    [54]

    FARHAD S, ALI S, IMAN F, et al. Effect of oleuropein on morphine-induced hippocampus neurotoxicity and memory impairments in rats[J]. Naunyn-Schmiedeberg's Archives of Pharmacology,2019,392(11):1383−1391. doi: 10.1007/s00210-019-01678-3

    [55]

    ZHENG S J, WANG Y N, FANG J J, et al. Oleuropein ameliorates advanced stage of type 2 diabetes in db/db mice by regulating gut microbiota[J]. Nutrition,2021,13(7):2131.

    [56] 候丹, 刘铜华. 橄榄苦苷对糖尿病小鼠肝脏糖代谢的作用及机制[J]. 中国实验方剂学杂志,2018,24(23):134−139. [HOU D, LIU T H. Effect and mechanism of oleuropein on glucose metabolism of liver in diabetic mice[J]. Chinese Journal of Experimental Traditional Medical Formulae,2018,24(23):134−139.

    HOU D, LIU TH. Effect and mechanism of oleuropein on glucose metabolism of liver in diabetic mice[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(23): 134-139.

    [57]

    ALI C. Inhibition of human islet amyloid polypeptide aggregation and cellular toxicity by oleuropein and derivatives from olive oil[J]. Alzheimer's and Dementia,2020,16(53):e047624.

    [58]

    ZHANG Z W, ZHAO H, WANG A X. Oleuropein alleviates gestational diabetes mellitus by activating AMPK signaling[J]. Endocr Connect,2021,10(1):45−53. doi: 10.1530/EC-20-0466

    [59]

    CARNEVAL R, SILVESTRI R, LOFFREDO L, et al. Oleuropein, a component of extra virgin olive oil, lowers postprandial glycaemia in healthy subjects[J]. Brit J Clin Pharmaco,2018,84(7):1566−1574. doi: 10.1111/bcp.13589

    [60] 许二平. 橄榄降脂胶囊调节高脂血症大鼠血脂及载脂蛋白AI、B的研究[J]. 中国中医基础医学杂志,2009,15(10):745−747. [XU E P. Effect of olive antihyperlipidemia capsule on lipids and apolipoprotein AI, B in hyperlipmia rat liver[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine,2009,15(10):745−747.

    XU E P. Effect of olive antihyperlipidemia Capsule on Lipids and apolipoprotein AI、B in hyperlipmia rat liver[J]. Chinese Journal of Basic Medicine in Traditional Chinese Medicine, 2009, 15(10): 745-747.

    [61]

    MALLIOU F, ANDREADOU I, GONZALEZ F J, et al. The olive constituent oleuropein, as a PPARα agonist, markedly reduces serum triglycerides[J]. J Nutr Bio chem,2018,59:17−28. doi: 10.1016/j.jnutbio.2018.05.013

    [62]

    ASMA M, FATMA H, INES F, et al. Oleuropein and hydroxytyrosol rich extracts from olive leaves attenuate liver injury and lipid metabolism disturbance in bisphenol a-treated rats[J]. Food Funct,2018,9(6):3220−3234. doi: 10.1039/C8FO00248G

    [63] 段文达, 冯玥, 黄新异, 等. 油橄榄叶提取物对三种实验动物模型的降糖降脂作用研究[J]. 中药药理与临床,2020,36(6):125−130. [DUAN W D, FENG Y, HUANG X Y, et al. Study of hypoglycaemic and antihyperlipidemic effects of Olea europaea L. leaves extract on three experimental animal models[J]. Chinese Pharmacology and Clinical,2020,36(6):125−130.

    DUAN W D, FENG Y, HUANG X Y, et al. Study of hypoglycaemic and antihyperlipidemic effects of Olea europaea L. Leaves extract on three experimental animal models[J]. Chinese Pharmacology and Clinical, 2020, 36(06): 125-130.

    [64]

    TONG T, WANG Y N, ZHANG C M, et al. In vitro andin vivo antihypertensive and antioxidant activities of fermented roots of Allium hookeri[J]. Chin Herb Med,2021,13(4):541−548.

    [65] 田志祥, 冯坤苗, 狄志彪, 等. 橄榄苦苷的提取优化及其降压活性研究[J]. 中国食品添加剂,2015(10):82−87. [TIAN Z X, FENG K M, DI Z B, et al. The optimization of extracting conditions of oleuropein and its antihypertension effect[J]. China Food Additives,2015(10):82−87. doi: 10.3969/j.issn.1006-2513.2015.10.007

    TIAN Z X, FENG K M, DI Z B, et al. The optimization of extracting conditions of oleuropein and its antihypertension effect[J]. China Food Additives, 2015(10): 82-87. doi: 10.3969/j.issn.1006-2513.2015.10.007

    [66]

    SONJA I, NENAD S, NIKOLA S, et al. Effects of oleuropein on rat's atria and thoracic aorta: A study of antihypertensive mechanisms[J]. Can J Physiol Pharm,2021,99(1):110−114. doi: 10.1139/cjpp-2020-0363

    [67]

    SUN W Y, WANG X, HOU C, et al. Oleuropein improves mitochondrial function to attenuate oxidative stress by activating the Nrf2 pathway in the hypothalamic paraventricular nucleus of spontaneously hypertensive rats[J]. Neuropharmacology,2017,113(Pt A):556−566.

    [68] 王以撒, 李文兰, 孙加琳, 等. 天然产物抗肥胖活性的研究进展[J]. 中药药理与临床,2021,37(3):235−240. [WANG Y S, LI W L, SUN J L, et al. Research progress on anti-obesity activity of natural products[J]. Pharmacology and Clinics of Chinese Materia Medica,2021,37(3):235−240.

    WANG Y S, LI W L, SUN J L, et al. Research progress on anti-Obesity activity of natural products[J]. Pharmacology and Clinics of Chinese Materia Medica, 2021, 37(03): 235-240.

    [69]

    LEPORE S M, MORITTU V M, CELANO M, et al. Oral administration of oleuropein and its semisynthetic peracetylated derivative prevents hepatic steatosis, hyperinsulinemia, and weight gain in mice fed with high fat cafeteria diet[J]. Int J Endocrinol,2015:431453.

    [70]

    NARAE K, SONG S J, YU R N, et al. Oleuropein attenuates visceral adiposity in high-fat diet-induced obese mice through the modulation of WNT10b- and galanin-mediated signalings[J]. Mol Nutr Food Res,2014,58(11):2166−2176. doi: 10.1002/mnfr.201400159

    [71]

    INGE S, ELISE F, HANS J M, et al. Nutraceutical oleuropein supplementation prevents high fat diet-induced adiposity in mice[J]. Journal of Functional Foods,2015,14:702−715. doi: 10.1016/j.jff.2015.02.040

    [72]

    RIHAM G, MAHA R, NOHA M, et al. Oleuropein as a novel topical antipsoriaticnutraceutical: Formulation in microemulsion nanocarrier and exploratory clinical appraisal[J]. Expert Opin Drug Del,2021,18(10):1523−1532. doi: 10.1080/17425247.2021.1932813

    [73]

    TONG T, KIM N, PARK T. Topical application of oleuropein induces anagen hair growth in telogen mouse skin[J]. PLoS One,2017,10(6):e0129578.

    [74] 陈静, 魏鉴腾, 裴栋, 等. 橄榄苦苷对酪氨酸酶抑制作用的研究[J]. 天然产物研究与开发, 2021, 33(12): 1998-2003.

    CHEN J, WEI J T, PEI D, et al. Study on the inhibitory effect of oleuropein on tyrosinase[J]. Nat Prod Res Dev, 2021, 33(12): 1998-2003.

    [75] 杨阳, 鲁军, 孙冰洁, 等. 白藜芦醇对酪氨酸酶体外抑制活性的动力学研究[J]. 食品与生物技术学报,2011,30(4):632−635. [YANG Y, LU J, SUN B J, et al. Inhibitory kinetics study of resveratrol on tyrosinase activity in vitro[J]. J Food Sci Biotech,2011,30(4):632−635.

    YANG Y, LU J, SUN BJ, et al. Inhibitory kinetics study of resveratrol on tyrosinase activity in vitro[J]. J Food Sci Biotech, 2011, 30(04): 632-635.

图(1)  /  表(1)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-07
  • 网络出版日期:  2022-07-27
  • 刊出日期:  2022-09-30

目录

/

返回文章
返回