• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

狭鳕鱼片盐渍过程中品质及风味物质的变化

井月欣, 张晴, 马长伟, 张健, 李振铎, 刘昕, 刘慧慧, 赵云苹, 王共明, 刘芳, 曲敏

井月欣,张晴,马长伟,等. 狭鳕鱼片盐渍过程中品质及风味物质的变化[J]. 食品工业科技,2022,43(12):62−69. doi: 10.13386/j.issn1002-0306.2021090002.
引用本文: 井月欣,张晴,马长伟,等. 狭鳕鱼片盐渍过程中品质及风味物质的变化[J]. 食品工业科技,2022,43(12):62−69. doi: 10.13386/j.issn1002-0306.2021090002.
JING Yuexin, ZHANG Qing, MA Changwei, et al. Changes of Quality and Flavor Compounds in Alaska Pollock Fillet During Salting[J]. Science and Technology of Food Industry, 2022, 43(12): 62−69. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090002.
Citation: JING Yuexin, ZHANG Qing, MA Changwei, et al. Changes of Quality and Flavor Compounds in Alaska Pollock Fillet During Salting[J]. Science and Technology of Food Industry, 2022, 43(12): 62−69. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090002.

狭鳕鱼片盐渍过程中品质及风味物质的变化

基金项目: 山东省鱼类产业技术体系加工与质量控制岗位(SDAIT-12-08)。
详细信息
    作者简介:

    井月欣(1987−),女,硕士,工程师,研究方向:食品质量与安全,E-mail:jyx2013xin@163.com

    张晴(1998−),女,硕士研究生,研究方向:水产品加工与贮藏工程,E-mail:zhangqing181@163.com

    通讯作者:

    张健(1980−),男,博士,副研究员,研究方向:水产品加工与贮藏,E-mail:zjsd408@163.com

  • 中图分类号: TS254.4

Changes of Quality and Flavor Compounds in Alaska Pollock Fillet During Salting

  • 摘要: 为了探究狭鳕鱼片在盐渍过程中品质变化,选取狭鳕鱼片为原料,采用加盐量100%(w/w),盐渍时间15 d,盐渍温度10 ℃干腌狭鳕鱼片,以Thiobarbituric acid(TBA)、亚硝酸盐、脂肪酸、游离氨基酸、组织结构和挥发性有机物为指标,研究不同盐渍时间对狭鳕鱼片品质的影响。结果表明,盐渍过程中,随着盐渍时间的延长,狭鳕鱼片值TBA由0.14 mg/kg缓慢上升至0.26 mg/kg,亚硝酸盐含量呈先上升后下降的趋势,最终为2.91 mg/kg;总饱和脂肪酸含量略为升高,单不饱和脂肪酸中十五碳烯酸和油酸含量显著升高(P<0.05),多不饱和脂肪酸中DHA和EPA含量显著减少(P<0.05);游离氨基酸总量呈现先减少后增加趋势,100~245 kDa大分子蛋白逐渐降解,48 kDa的肌动蛋白逐渐增加,20 kDa以下的蛋白发生部分降解,鱼片的肌纤维横截面变得不规则,肌纤维明显收缩,细胞间隙先变大后变小;鱼片的腥味成分减少,酯类、醇类物质含量增加。狭鳕鱼片在盐渍过程中,鱼肉的TBA值和亚硝酸盐含量均在安全范围内,脂质氧化以多不饱和脂肪酸氧化为主,某些大分子蛋白质逐渐降解,游离氨基酸盐渍中后期总量增加,肌纤维收缩,鱼腥味降低,鱼肉的整体风味得到改善。
    Abstract: In order to explore the quality changes of Alaska pollock fillet during salting, the Alaska pollock fillet were selected as raw materials and the drying conditions of Alaska pollock fillet were as follows: The amount of salt added was 100% (w/w), salting time was 15 days, and salting temperature was 10 ℃. The effects of different salting time on the quality of Alaska pollock fillets were studied with TBA, nitrite, fatty acid, free amino acid, tissue structure and volatile flavor compounds as indicators. The results showed that the TBA value of Alaska pollock fillet increased from 0.14 mg/kg to 0.26 mg/kg, the final content of nitrite which showed a trend of first increased and then decreased was 2.91 mg/kg. The total amount of saturated fatty acids in Alaska pollock fillet was slightly increased, the contents of pentacenoic acid and oleic acid in monounsaturated fatty acids significantly increased (P<0.05), and the contents of DHA and EPA in polyunsaturated fatty acids significantly decreased (P<0.05). The content of free amino acid showed a trend of first decreased and then increased. The macromolecular proteins which molecular weight was 100~245 kDa were gradually degraded, the content of actin which molecular weight was 48 kDa gradually increased and the proteins which molecular weight was less than 20 kDa were partially degraded. The cross section of muscle fibers of Alaska pollock fillet became irregular, muscle fibers contracted obviously, and the intercellular space first became larger and then smaller. The fishy components of Alaska pollock fillet decreased, and the contents of esters and alcohols increased. During the salting process of Alaska pollock fillets, the TBA value and nitrite of Alaska pollock fillet were within safe limits, the lipid oxidation was mainly polyunsaturated fatty acid oxidation, some macromolecular proteins were gradually degraded, the total amount of free amino acids increased in the middle and later stages of salting, the muscle fiber shrinked, the fishy smell decreased, and the overall flavor of fish meat was improved.
  • 黄线狭鳕(Theragra chalcogramma)又称阿拉斯加狭鳕,是全球捕捞产量最高的鳕鱼品种,广泛分布于太平洋北部,包括美国阿拉斯加州、俄罗斯等。在我国,黄线狭鳕主要产于黄海东部。狭鳕具有很高的经济价值,它的蛋白质含量高,而脂肪含量低[1],适合大规模工厂化加工生产。近年来,盐渍鳕鱼成为我国出口的鳕鱼加工新品,由于其风味独特、易保存,在欧美国家具有广泛的市场需求[2]。全球盐渍鳕鱼的消费总量每年约为24万吨,主要包括真鳕、狭鳕等种类。水产品腌制加工是一种常见的保藏方法,此法历史悠久、产品味道独特,深受广大消费者的喜爱。盐渍可以增加水产品的渗透压,降低水分活度,达到抑制腐败变质的作用。由于微生物和一些酶的作用,在盐渍过程中,水产品的品质和风味逐渐改变,产生了独特的风味[3]

    近年来,国内外研究者对腌制工艺的优化以及腌制对鱼肉品质和风味的影响进行了大量研究和探索。张建梅[4]发现腌制类食物容易产生亚硝酸盐自热污染的问题,污染水平一般低于20 mg/kg。陈娇娇等[5]研究了不同腌制条件对罗非鱼品质的影响,并优化了干腌工艺条件,发现腌制时间对鱼肉的氯化钠含量和氨基肽氮含量有显著影响,鱼肉的氯化钠含量与腌制盐度呈正相关。杨华等[6]研究了腌制对红鱼品质的影响,发现腌制方法和工艺条件均对腌制红鱼品质有显著影响。王腾等[7]研究了超声波辅助盐渍对鲩鱼理化性质和品质的影响,发现超声波可以缩短盐渍时间,抑制微生物的生长。Nguyen等[8]研究了不同盐水浓度对大西洋真鳕肌肉蛋白质构象的影响,发现盐浓度的增加促进了蛋白质的变性。曾令彬等[9]研究发现腌制和干燥使腊鱼中部分游离氨基酸含量增加,形成腊鱼特有风味。Esaiassen等[10]研究了腌制对鳕鱼感官品质的影响,发现腌制鳕鱼片的气味和口感比未腌制的鳕鱼更好。Rosa等[11]利用GC-MS测定了盐渍大西洋真鳕的挥发性成分变化,发现脂质和蛋白质的氧化有助于形成盐渍鳕鱼的特有风味。Barat等[12]分别用不同的盐水浓度腌制大西洋真鳕,发现在盐水浓度较高时,由于蛋白质盐析,鱼肉的蛋白质结构发生较大变化,产品含盐量较高且得率较低。Cui等[13]采用顶空-气相色谱-离子迁移技术(HS-GC-IMS)对不同烹饪方法的鱿鱼样品的挥发性物质进行了测定,发现腌制鱿鱼具有独特的特殊风味化合物,不同的烹饪方法可以影响鱿鱼的香气。庞一扬等[14]发现鱼肉腌制前后的挥发性成分发生了明显变化,腌制过程中鱼肉的腥味成分减少,醛酮类、酯类物质增加。

    目前,国内外学者对盐渍鳕鱼的研究以大西洋真鳕(Gadus morhua)为主,盐渍狭鳕的企业标准化加工以及品控缺少基础研究,对狭鳕在盐渍过程中发生的品质和风味变化研究甚少。因此,本文以狭鳕鱼片为原料,采用前期优化的盐渍工艺盐渍狭鳕鱼片,研究盐渍过程中狭鳕鱼片的品质变化,以期为加工出口型盐渍狭鳕产品提供理论支撑,并为鳕鱼深加工及其他鱼类加工提供参考。

    去骨去刺去皮狭鳕鱼片(重量为4~6盎司) 烟台嘉鸿食品有限公司;食用无碘盐 山东省盐业集团有限公司;正己烷(色谱纯)、三氯乙酸、三氯甲烷、乙二胺四乙酸(EDTA)、2-硫代巴比妥酸、冰乙酸、乙酸锌、亚铁氰化钾、硼酸钠、盐酸萘乙二胺、对氨基苯磺酸、琼脂糖、盐酸、乙酰氯、无水甲醇、碳酸钾、甲醛、乙醇 分析纯,国药集团化学试剂有限公司;总氨基酸测定试剂盒 南京建成生物工程研究所;Lowry法蛋白浓度测定试剂盒、彩虹245广谱蛋白Marker 北京索莱宝科技有限公司;DNA抽提试剂盒 美国MP Biomedicals公司;DNA凝胶回收试剂盒 美国Axygen公司。

    METTLER TOLEDO电子分析天平 瑞士/梅特勒托利多;DHG-9053A电热鼓风干燥箱 上海沙鹰科学仪器有限公司;HH-4电热恒温水浴锅 山东省烟台龙口市先科仪器公司;GC-2010高效气相色谱分析仪 日本岛津公司;Multiskan GO酶标仪 美国ThermoFisher公司;XW-80A旋涡混合器 上海精科实业有限公司;FlavourSpec®风味分析仪 济南海能仪器股份有限公司;YC-520L医用冷藏箱 中科美菱低温科技股份有限公司;DZQ真空包装机 上海阿凡佬机械有限公司;DHG-9053A电热鼓风干燥箱 上海沙鹰科学仪器有限公司;LEICA ICC50HD显微镜 德国莱卡公司;FD-2A冷冻干燥机 北京博医康实验仪器有限公司。

    采用注水法,在4 ℃下用纯水解冻狭鳕鱼片1 h,将其逐个清洗控干备用。

    采用干腌法,取漏网塑料筐(规格:37 cm×35 cm×3.5 cm)若干,底部用保鲜膜铺好,均匀地撒一层盐,再将狭鳕鱼片摆在塑料筐中,一层盐,一层狭鳕鱼片,每层盐都要均匀覆盖鱼肉表面,最后一层为盐,摆好后放置冷藏箱进行盐渍,盐渍条件为加盐量100%(w/w),盐渍时间15 d,盐渍温度10 ℃。分别在盐渍0、3、6、9、12、15 d取样,测定其脂肪氧化程度、亚硝酸盐含量、脂肪酸含量、游离氨基酸总量、蛋白质降解、微观组织结构和挥发性风味成分。

    采用蔡文强等[15]的方法,并略作修改。将去除表面食盐的狭鳕鱼片研碎,准确称取10 g研碎后的鱼肉于锥形瓶中,加入50 mL 7.5%的三氯乙酸溶液(含0.1%的EDTA),用摇床振摇30 min后,双层滤纸过滤。取5 mL上清液于带塞比色管中,加入5 mL 0.02 mol/L TBA溶液,塞紧管口,沸水浴40 min,冷却至室温后,转移至离心管中,1500 r/min离心25 min。取上清液,加入5 mL三氯甲烷并摇匀,静置分层后取上清液,测定在532和600 nm波长处的吸光值,同时做试剂空白,平行测定三次,结果取平均值,用以下公式计算TBA值。

    TBA(mg/kg)=A532A600155×m×72.06×100

    式中:A532、A600分别为在532、600 nm处的吸光值;155为丙二醛的毫摩尔吸光系数;72.06为丙二醛的分子量;m为称取的样品质量,g。

    亚硝酸盐含量依据GB/T 5009.33-2016测定[16]

    参照谭青等[17]的方法,并稍作更改。将去除表面食盐的狭鳕鱼片真冷冻干燥,取100 mg冻干的样品于消化管中,加入2 mL 10%乙酰氯甲醇溶液(乙酰氯:无水甲醇=1:10)、1 mL正己烷,塞紧盖子后混匀。于80 ℃金属浴中甲酯化2 h,冷却至室温,加入5 mL 6% K2CO3、2 mL正己烷,振荡后静置10 min。取上清液,用0.22 μm滤膜过滤至脂肪酸测定小瓶,采用气相色谱仪分析,色谱柱为SP-2560气相色谱柱(100 mm×0.25 mm×0.2 mm),进样量为1 μL,根据脂肪酸标准品的保留时间进行定性。

    采用总氨基酸测定试剂盒的比色法进行氨基酸总量的测定;采用Lowry法蛋白浓度测定试剂盒进行蛋白浓度的测定。

    参考刘家维等[18]的方法并作适当修改。制备分离胶浓度为10%,浓缩胶浓度为5%,加入玻璃板中。将样品与5×上样缓冲液(40 μL+10 μL)混匀,沸水浴5 min后上样,样品上样量为10 μL,彩色245广谱蛋白Marker上样量为5 μL。以80 V的恒压进行电泳,当样品进入分离胶时,将电压改为120 V,待溴酚蓝跑到胶的底部时停止电泳。取出凝胶,使用考马斯亮蓝染液染色30 min后倒掉。用蒸馏水清洗凝胶2~3次,加入脱色液,放在摇床上振摇,每30 min更换一次脱色液,直至得到清晰的条带。随后,用凝胶成像分析仪进行拍照分析。

    根据沈晖等[19]的方法进行石蜡切片,并稍作修改。用手术刀片把样品切成3 mm×3 mm×3 mm的大小,配制含苦味酸饱和液(1.22%)75 mL、福尔马林25 mL、乙酸5 mL的Bolin氏液作为固定液,将样品置于固定液中固定23 h,置于70%乙醇中进行置换。随后将样品放入全自动组织脱水机中,进行乙醇梯度脱水、二甲苯透明和浸蜡。浸蜡之后,用镊子取样,使用石蜡包埋机,于5 cm×3 cm×3 cm的纸盒内进行包埋,包埋后迅速冷却。修剪石蜡块,用旋转切片机切片,每片厚度为4 µm,取至少3片完整的连续切片,于40 ℃的水浴中展片,转移至载玻片,置于烘箱中(37 ℃)烘干。烘干的切片经脱蜡、苏木精-伊红染色、乙醇梯度脱水、二甲苯透明后,用中性树胶封片,盖上盖玻片,置于烘箱(37 ℃)烘片48 h,用电子显微镜观察、拍照。

    采用HS-GC-IMS技术,使用FlavourSpec®风味分析仪测定盐渍狭鳕样品中的挥发性成分。称取2 g盐渍狭鳕样品,置于20 mL顶空瓶中,在60 ℃孵育15 min后,直接顶空进样,进样量为500 μL。参考Zhang等[20]的方法,设定分析条件见表1

    表  1  HS-GC-IMS分析条件
    Table  1.  Experimental conditions of HS-GC-IMS
    指标参数
    分析时间20 min
    色谱柱类型MXT-5,15 m,ID:0.53 mm,膜厚1 μm
    柱温60 ℃
    载气/漂移气N2
    IMS温度45 ℃
    进样体积500 μL
    孵育时间15 min
    孵育温度60 ℃
    进样针温度65 ℃
    孵化转速500 r/min
    下载: 导出CSV 
    | 显示表格

    所有实验均重复3次,实验结果以平均值±标准差表示。采用SPSS23.0以及Microsoft Office Excel 2016完成数据的处理及分析。

    在鱼腌制过程中,脂肪氧化对鱼类腌制产品的感官、风味、品质特性起着重要的作用[21]。由图1可知,随着盐渍时间的增加,鱼肉的TBA值由0.14 mg/kg升至0.26 mg/kg,呈缓慢上升趋势,说明脂质在盐渍过程中发生了氧化,此阶段主要是脂肪氧化酶的作用。TBA值均小于1.0 mg/kg,说明盐渍狭鳕鱼片的脂质氧化程度均在安全范围内[22]

    图  1  盐渍过程中盐渍狭鳕鱼片脂质氧化程度的变化
    注:不同小写字母表示显著性差异,P<0.05;图2~图3同。
    Figure  1.  Changes of degree of lipid oxidation of dry-salted Alaska pollock fillets during salting

    图2可知,随着盐渍时间的增加,狭鳕鱼片中的亚硝酸盐含量呈先上升后下降的趋势,盐渍后亚硝酸盐含量由2.00 mg/kg增加到2.91 mg/kg,小于国标规定的30 mg/kg,说明盐渍使鱼肉中亚硝酸盐的含量增加,且在安全范围内[23]。由于鱼体本身就含有硝酸盐和亚硝酸盐,在盐渍前期,一部分硝酸盐被硝酸盐还原菌还原,生成亚硝酸盐,因此亚硝酸盐的含量升高;在盐渍中后期,亚硝酸盐被其他微生物还原成氮气、氨气等气体,而且由于盐渍后期鱼肉含盐量的升高,硝酸盐还原菌的活性受到抑制,因此亚硝酸盐的含量下降[24]。另外,由于盐渍狭鳕鱼片加工过程中未额外添加硝酸盐和亚硝酸盐,因此亚硝酸盐的含量总体处于较低水平。这与刘敏[25]的研究结果类似,在腌制过程中,鳓鱼的亚硝酸盐含量先增加后减少,且在腌制第6 d达到最大值。

    图  2  盐渍过程中盐渍狭鳕鱼片亚硝酸盐含量的变化
    Figure  2.  Changes of the content of nitrite in dry-salted Alaska pollock fillets during salting

    采用气相色谱检测到盐渍过程中鱼肉20种脂肪酸含量的变化,结果见表2。在盐渍过程中,盐渍狭鳕鱼片的饱和脂肪酸总量略升高,其中硬脂酸(C18:0)含量最高,且在盐渍过程中(3、6、12、15 d)显著升高(P<0.05);单不饱和脂肪酸中,十五碳烯酸(C15:1)的含量最高,油酸(C18:1n-9c)含量仅次于十五碳烯酸的含量,且两者的含量在盐渍过程中呈升高趋势,说明脂肪酸水解的产物主要是十五碳烯酸和油酸;多不饱和脂肪酸中,DHA含量最高,其次是EPA,且两者的含量在盐渍过程中均呈下降趋势。以上结果表明脂质在盐渍过程中发生了氧化,且以多不饱和脂肪酸氧化为主。这与郭雅[26]的研究结果一致,在腌制过程中,风干鳊鱼的多不饱和脂肪酸含量减少,饱和脂肪酸含量明显升高。

    表  2  盐渍对盐渍狭鳕鱼片的脂肪酸组成及含量的影响
    Table  2.  Effect of salting on fatty acid composition and content of dry-salted Alaska pollock fillets
    脂肪酸含量(%)
    0 d3 d6 d9 d12 d15 d
    豆蔻酸(C14:01.84±0.05e2.33±0.17b2.51±0.07a1.99±0.00d2.20±0.12c1.68±0.02f
    十五碳烯酸(C15:119.65±0.01cd19.51±0.37d19.75±0.51cd20.35±0.08b19.90±0.53c20.50±0.03b
    棕榈酸(C16:00.19±0.46ab0.14±0.02c0.18±0.01ab0.20±0.03a0.17±0.01b0.00±0.00d
    棕榈油酸(C16:11.97±0.01d2.66±0.30a2.01±0.01d2.31±0.02c2.30±0.09c2.31±0.03c
    珍珠酸(C17:00.27±0.04cd0.28±0.04bc0.33±0.01a0.29±0.02b0.27±0.00cd0.26±0.01d
    十七碳一烯酸(C17:10.24±0.02bc0.33±0.04a0.26±0.01b0.21±0.04cd0.21±0.05cd0.19±0.02d
    硬脂酸(C18:03.30±0.03e3.03±0.13f3.37±0.00d3.39±0.02d3.49±0.00c3.95±0.09a
    油酸(C18:1n-9c5.49±0.39d6.08±0.11b5.05±0.04e5.01±0.04e5.79±0.56c6.78±0.23a
    十八碳烯酸(C18:1n-74.11±0.24f4.39±0.05d3.97±0.00g4.35±0.04e4.64±0.01c5.60±0.01a
    亚油酸(C18:2n-6c0.65±0.01cd0.71±0.09cd0.81±0.04bc0.59±0.03d0.96±0.37b0.73±0.18cd
    γ-亚麻酸(C18:3n-63.35±0.23f5.11±0.14b5.58±0.08a5.02±0.11c4.59±0.00d3.33±0.03f
    花生一烯酸(C20:10.16±0.02e0.23±0.07cd0.24±0.00bc0.19±0.02de0.29±0.10ab0.24±0.01bc
    花生二烯酸(C20:20.29±0.02e0.39±0.07bc0.38±0.03c0.31±0.01e0.41±0.02ab0.33±0.01d
    二十碳三烯酸(C20:3n-61.14±0.14f1.91±0.16a1.73±0.06b1.57±0.04d1.47±0.01e0.77±0.03g
    二十碳三烯酸(C20:3n-31.15±0.02d1.11±0.01e1.19±0.01c1.21±0.04c1.26±0.02b1.44±0.01a
    二十二碳二烯酸(C22-20.23±0.04cd0.27±0.02b0.25±0.00c0.21±0.04d0.25±0.02c0.31±0.02a
    EPA(C20:5n-323.19±0.48b24.37±0.52a23.12±0.40b22.91±0.01b21.98±0.42c20.90±0.17d
    鲨油酸(C24:10.53±0.00d0.50±0.06d0.64±0.08c0.74±0.01b0.65±0.06c0.83±0.01a
    二十二碳五烯酸(C22:5n-31.33±0.01e1.41±0.05cd1.58±0.02b1.62±0.01a1.42±0.02c1.40±0.03d
    DHA(C22:6n-328.41±0.37a23.48±0.47e24.40±0.20d25.20±0.07c25.39±0.53c26.60±0.32b
    ∑SFA5.60±0.58b5.78±0.36b6.32±0.09a5.79±0.09b6.13±0.13ab5.89±0.13b
    ∑MUFA32.15±0.69b33.70±1.00b31.99±0.65b33.24±0.23b33.78±1.40b36.45±0.34a
    ∑PUFA59.74±1.32a58.76±1.23a59.04±0.84a58.64±0.36a57.73±1.41ab55.81±0.80b
    注:C18:1n-9c、C18:2n-6c中的c代表顺式;∑SFA为饱和脂肪酸总量;∑MUFA为单不饱和脂肪酸总量;∑PUFA为多不饱和脂肪酸总量;同行标注的不同小写字母表示显著性差异,P<0.05。
    下载: 导出CSV 
    | 显示表格

    图3可知,随着盐渍时间的增加,狭鳕中游离氨基酸总量先急剧减小,再逐渐增加。这可能是因为盐渍前期水分的大量流失,导致游离氨基酸也跟着流失;盐渍中后期,鱼肉中蛋白质在蛋白酶、氨肽酶的作用下水解,生成了游离氨基酸,因此游离氨基酸总量逐渐增加。

    图  3  盐渍对盐渍狭鳕鱼片中游离氨基酸总量的影响
    Figure  3.  Effect of salting on the total free amino acids in dry-salted Alaska pollock fillets

    图4可知,随着盐渍时间的增加,在100~245 kDa之间的条带颜色明显变浅,说明大分子蛋白在盐渍过程中逐渐降解;肌动蛋白(48 kDa)在盐渍过程中(9~15 d)逐渐增加;分子量在20 kDa以下的蛋白发生部分降解。这可能是因为,在盐渍过程中,某些蛋白在高盐的作用下析出并降解,生成了分子量更小的蛋白片段,并进一步反应生成盐渍狭鳕鱼片的滋味物质[27]。盐渍的低温环境抑制了组织蛋白酶的活性,使蛋白质降解较缓慢。

    图  4  盐渍对盐渍狭鳕鱼片中蛋白质降解的影响
    Figure  4.  Effect of salting on the protein degradation of dry-salted Alaska pollock fillets

    在显微镜放大倍数为20倍时,狭鳕肌纤维横截面的微观结构如图5,可以看到盐渍前鱼肉肌纤维的横截面呈规则的长圆形且大小相似,细胞间隙较均匀;而随着盐渍时间的增加,肌纤维的横截面变得不规则,肌纤维明显收缩,细胞间隙先变大后变小。这些变化可能是由蛋白质盐析和肌肉结构成分的酶降解引起的。这与大西洋真鳕在盐渍过程中的微观结构变化相似,Thorarinsdottir等[28]研究发现,腌制使大西洋真鳕肌肉纤维收缩,且扩大了细胞间隙。

    图  5  盐渍对盐渍狭鳕鱼片微观结构的影响
    注:A、B、C、D、E、F分别代表盐渍0、3、6、9、12、15 d的样品。
    Figure  5.  Effect of salting on microstructure of dry-salted Alaska pollock fillets

    图6表3中对比分析可知,不同盐渍时间下狭鳕中的挥发性成分显示了较大差异(红色框区域)。可以看到,盐渍15 d后,壬醛、2-甲基丙醛、1-己醇、3-甲基-1-丁醇、异丙醇、乙酸丁酯、乙酸丙酯、2-丁酮、2,3-丁二酮、2-丙酮等物质的含量显著降低(P<0.05)。其中壬醛主要来源于油酸的氧化,呈鱼腥味[29];3-羟基-2-丁酮呈黄油味,2-丁酮呈辛辣味,为鱼类腐败的主要物质[30],盐渍过程中这些物质的相对含量降低,说明盐渍降低了鱼肉的鱼腥味,且鱼肉的整体风味得到改善。随着盐渍时间的增加,庚醛、己醛、酯类、醇类物质等相对含量增加,其中,庚醛呈焦香味和油脂味,己醛呈青草味,均来源于亚油酸氧化,且阈值较低,盐渍过程中其相对含量均呈增加趋势,对盐渍狭鳕的风味起到了积极的作用;酯类、醇类物质相对含量均明显增加,其中,乙酸乙酯呈果香,且阈值较低,其相对含量在盐渍15 d后显著增加(P<0.05),对盐渍狭鳕的风味起到了积极的作用。

    表  3  不同盐渍时间下盐渍狭鳕鱼片挥发性成分的信号强度
    Table  3.  Signal intensities of the volatile organic compounds in dry-salted Alaska pollock fillets at different salting time
    挥发性有机物峰体积(峰强度)
    0 d3 d6 d9 d12 d15 d
    癸醛330.57±78.62a303.01±22.30a269.08±16.40a314.62±2.37a280.98±27.12a278.26±25.95a
    壬醛690.28±73.43a499.32±23.59b442.74±93.24bc406.64±37.08bc392.51±22.80c449.40±49.66bc
    辛醛362.19±27.06a271.53±22.29bc238.74±31.79c238.95±24.77c254.14±16.55bc294.68±17.15b
    苯甲醛101.09±3.31d185.80±22.18c217.29±14.48b190.22±6.91c244.81±9.58ab258.98±27.43a
    庚醛-M323.74±1.89b385.84±36.55ab414.39±19.23a359.13±30.72ab346.65±4.65ab390.49±23.45a
    庚醛-D42.74±5.64c69.71±7.14b74.73±11.11ab65.25±21.17ab60.05±7.52b81.95±3.40a
    己醛-M620.53±14.24c623.50±18.82c876.48±20.56a854.66±45.12a620.49±16.38c769.96±23.57b
    己醛-D248.25±5.55e540.41±37.62c928.44±59.88a781.83±96.15b419.23±24.87d917.21±58.74a
    丙醛640.53±16.82a133.36±1.59b74.68±8.69cd123.00±10.39b86.70±16.57c62.51±7.62d
    丁醛548.38±3.88a415.89±51.92bc439.47±26.95b361.27±12.07c341.82±20.82cd498.32±79.87ab
    戊醛90.98±2.39c99.10±4.33c101.31±6.72c252.77±14.84a209.67±3.13b280.06±37.04a
    2-甲基丁醛-M711.36±12.98a370.83±9.31b319.11±28.64c190.55±13.95e259.10±11.51d165.38±9.96f
    2-甲基丁醛-D3144.83±42.85a565.09±2.23d481.18±51.41d817.67±77.83c763.98±21.82c1010.45±71.59b
    3-甲基丁醛-M594.85±10.24ab545.18±19.00b525.23±52.77b574.13±43.49ab612.94±22.33a551.87±18.02b
    3-甲基丁醛-D1714.01±59.04a296.60±22.93bc250.23±74.20c350.92±87.94bc397.31±40.95b329.97±25.34bc
    2-甲基丙醛-M1811.01±24.11a852.48±41.69c956.31±20.28b638.69±23.09d884.72±52.54bc802.50±83.72c
    2-甲基丙醛-D557.49±42.68a36.44±9.48b33.28±2.16b23.34±2.54b29.63±1.57b32.02±7.00b
    3-甲硫基丙醛113.82±1.96a107.39±7.55a107.35±2.14a89.73±5.32b80.77±6.20b83.48±9.38b
    反式-2-戊烯醛20.44±2.73c69.60±12.59b79.76±5.20b72.93±15.39b95.16±5.07ab122.31±52.98a
    反式-2-己烯醛26.74±2.52d83.96±7.80c103.41±7.59c186.17±22.20b153.89±7.67b289.76±54.86a
    3-戊酮-M171.40±8.77b187.46±5.92a197.85±12.06a95.98±7.71c81.72±4.81d69.75±7.29d
    3-戊酮-D119.62±7.51d617.60±64.91a572.84±73.39a423.98±11.64b292.32±29.08c476.80±68.17b
    2-丁酮-M471.92±6.91a279.15±14.39d349.22±12.65b305.58±6.83c268.11±14.94d304.10±12.60c
    2-丁酮-D245.05±5.70a105.82±17.24c153.83±23.51b108.56±2.78c117.50±6.03c155.12±38.15b
    3-辛酮-M72.09±20.94b122.11±11.96b86.73±6.82b92.53±16.89b484.23±88.70a137.22±31.74b
    3-辛酮-D28.49±11.20b35.32±5.68b42.81±2.30b36.16±1.54b76.10±16.70a34.64±2.31b
    2-丙酮1121.08±93.19a312.77±11.19b213.59±21.63c190.16±19.24c179.33±16.17c171.52±36.87c
    2, 3-丁二酮297.33±5.68b298.99±6.33b250.80±1.31d226.80±6.29e514.52±22.89a268.67±8.51c
    2, 3-戊二酮192.22±2.91b226.07±6.92a219.29±7.53a242.81±17.83a207.43±18.57ab217.34±19.80a
    3-羟基-2-丁酮-D242.40±14.96c282.63±9.07b214.60±10.37d288.22±6.86b277.37±20.66b345.41±18.02a
    3-羟基-2-丁酮-M1004.53±27.35a876.22±26.31b783.00±38.23c630.59±22.03d668.28±4.51d532.04±17.72e
    5-甲基-3-庚酮55.44±7.55b86.59±9.53a89.76±9.40a79.56±3.43a83.70±4.39a88.35±2.85a
    6-甲基-5-庚烯-2-酮42.26±3.58d64.32±4.36ab48.76±1.12c67.31±5.74ab60.03±5.60b78.10±10.60a
    甲基异丁基酮175.15±8.28d144.22±7.11d160.09±9.60d486.45±19.75b376.20±21.33c638.74±25.31a
    3-甲基-1-丁醇-M69.58±10.81a62.09±3.11a47.59±4.13b28.78±4.13c40.71±2.57b25.82±2.10c
    3-甲基-1-丁醇-D63.88±2.38a37.72±4.33b35.40±4.10bc30.40±1.84c33.25±3.99bc24.67±3.68d
    乙醇603.29±18.07e1993.87±91.09b1080.91±52.82d2747.95±184.52a2160.47±363.92b1225.07±86.97c
    丙醇131.77±4.00c550.55±56.82a508.76±18.02ab439.92±36.38b491.86±2.91ab566.42±75.44a
    异丙醇511.33±51.55a226.66±18.46b207.84±8.25b179.44±26.69b178.22±13.99b182.81±18.47b
    正丁醇-M78.79±2.12e321.89±15.00d316.66±10.12d510.82±46.36b553.65±6.78a407.52±17.07c
    正丁醇-D160.26±2.85d163.83±9.98d128.02±8.38e1045.65±10.90b757.22±27.08c1239.65±25.82a
    1-己醇75.88±18.76a43.91±2.38b41.99±3.15b34.97±4.70b30.37±1.15b36.65±1.48b
    2-乙基己醇181.06±44.43bc122.71±1.41c135.99±17.46bc183.17±43.23b142.83±7.13bc484.85±151.12a
    乙酸乙酯-M1233.04±17.66b1066.04±37.23d1132.75±21.85c1183.02±15.80bc1142.04±26.35c1361.97±55.48a
    乙酸乙酯-D2072.51±108.07b1304.26±50.72c1363.17±46.54c1493.67±39.26c1288.08±54.85c2486.64±43.28a
    乙酸丁酯152.34±7.23a70.44±3.46b75.81±3.64b53.33±2.30c57.86±3.90c60.56±5.22c
    乙酸丙酯649.95±23.07a466.76±17.08b382.88±12.04c363.15±20.81c349.47±8.61c350.05±24.84c
    乙酸异戊酯27.51±4.45a22.85±2.90ab17.46±1.58b18.34±2.74ab23.97±4.26a25.96±2.68a
    戊酸70.71±1.56a26.98±3.98b20.40±6.18c17.79±2.68c20.07±3.85c17.63±1.10c
    2-甲基丙酸143.55±11.39cd174.94±17.74bc106.50±7.34d159.67±26.28bc389.23±38.98a200.98±36.30b
    二甲基二硫395.73±7.85c664.21±5.28a506.42±68.09b445.00±40.35b504.54±32.73b621.93±28.68a
    3-呋喃甲醇81.79±9.21d366.53±26.80c500.28±29.56ab454.27±44.90b492.56±12.98ab544.25±67.66a
    甲基吡嗪24.65±1.30d87.44±8.45a63.51±1.67b57.11±3.08cb66.51±1.48b69.20±15.98b
    注:部分物质后面的M、D分别代表该物质的单体与二聚体;同行标注的不同小写字母表示显著性差异,P<0.05。
    下载: 导出CSV 
    | 显示表格
    图  6  不同盐渍时间下盐渍狭鳕鱼片挥发性成分指纹谱图
    Figure  6.  Fingerprint of volatile organic compounds in dry-salted Alaska pollock fillets at different salting time

    本文采用加盐量100%(w/w),盐渍时间15 d,盐渍温度10 ℃的条件盐渍狭鳕鱼片,研究盐渍过程中狭鳕鱼片的品质变化。随着盐渍时间的增加,狭鳕鱼肉的TBA值由0.14 mg/kg升至0.26 mg/kg,亚硝酸盐含量由2.00 mg/kg增加到2.91 mg/kg,两者均在安全范围内。在盐渍过程中,盐渍狭鳕鱼片的饱和脂肪酸中硬脂酸(C18:0)和单不饱和脂肪酸中十五碳烯酸(C15:1)和油酸(C18:1n-9c)含量在盐渍过程中呈升高趋势,多不饱和脂肪酸中DHA和EPA含量在盐渍过程中均呈下降趋势,盐渍过程中以多不饱和脂肪酸氧化为主。随着盐渍时间的增加,狭鳕中游离氨基酸总量呈现先减少后增加,大分子蛋白在盐渍过程中逐渐降解,在100~245 kDa之间的条带颜色明显变浅,肌动蛋白(48 kDa)逐渐增加;在20 kDa以下的蛋白发生部分降解,肌纤维的横截面变得不规则,肌纤维明显收缩,细胞间隙先变大后变小。在盐渍过程中,盐渍狭鳕鱼片的腥味成分减少,酯类、醇类物质含量增加。关于狭鳕鱼片盐渍过程中微生物群对其品质的影响还需进一步研究探讨,以期为加工出口型盐渍狭鳕产品提供了理论支撑,并为鳕鱼深加工及其他鱼类加工提供了理论支持和参考。

  • 图  1   盐渍过程中盐渍狭鳕鱼片脂质氧化程度的变化

    注:不同小写字母表示显著性差异,P<0.05;图2~图3同。

    Figure  1.   Changes of degree of lipid oxidation of dry-salted Alaska pollock fillets during salting

    图  2   盐渍过程中盐渍狭鳕鱼片亚硝酸盐含量的变化

    Figure  2.   Changes of the content of nitrite in dry-salted Alaska pollock fillets during salting

    图  3   盐渍对盐渍狭鳕鱼片中游离氨基酸总量的影响

    Figure  3.   Effect of salting on the total free amino acids in dry-salted Alaska pollock fillets

    图  4   盐渍对盐渍狭鳕鱼片中蛋白质降解的影响

    Figure  4.   Effect of salting on the protein degradation of dry-salted Alaska pollock fillets

    图  5   盐渍对盐渍狭鳕鱼片微观结构的影响

    注:A、B、C、D、E、F分别代表盐渍0、3、6、9、12、15 d的样品。

    Figure  5.   Effect of salting on microstructure of dry-salted Alaska pollock fillets

    图  6   不同盐渍时间下盐渍狭鳕鱼片挥发性成分指纹谱图

    Figure  6.   Fingerprint of volatile organic compounds in dry-salted Alaska pollock fillets at different salting time

    表  1   HS-GC-IMS分析条件

    Table  1   Experimental conditions of HS-GC-IMS

    指标参数
    分析时间20 min
    色谱柱类型MXT-5,15 m,ID:0.53 mm,膜厚1 μm
    柱温60 ℃
    载气/漂移气N2
    IMS温度45 ℃
    进样体积500 μL
    孵育时间15 min
    孵育温度60 ℃
    进样针温度65 ℃
    孵化转速500 r/min
    下载: 导出CSV

    表  2   盐渍对盐渍狭鳕鱼片的脂肪酸组成及含量的影响

    Table  2   Effect of salting on fatty acid composition and content of dry-salted Alaska pollock fillets

    脂肪酸含量(%)
    0 d3 d6 d9 d12 d15 d
    豆蔻酸(C14:01.84±0.05e2.33±0.17b2.51±0.07a1.99±0.00d2.20±0.12c1.68±0.02f
    十五碳烯酸(C15:119.65±0.01cd19.51±0.37d19.75±0.51cd20.35±0.08b19.90±0.53c20.50±0.03b
    棕榈酸(C16:00.19±0.46ab0.14±0.02c0.18±0.01ab0.20±0.03a0.17±0.01b0.00±0.00d
    棕榈油酸(C16:11.97±0.01d2.66±0.30a2.01±0.01d2.31±0.02c2.30±0.09c2.31±0.03c
    珍珠酸(C17:00.27±0.04cd0.28±0.04bc0.33±0.01a0.29±0.02b0.27±0.00cd0.26±0.01d
    十七碳一烯酸(C17:10.24±0.02bc0.33±0.04a0.26±0.01b0.21±0.04cd0.21±0.05cd0.19±0.02d
    硬脂酸(C18:03.30±0.03e3.03±0.13f3.37±0.00d3.39±0.02d3.49±0.00c3.95±0.09a
    油酸(C18:1n-9c5.49±0.39d6.08±0.11b5.05±0.04e5.01±0.04e5.79±0.56c6.78±0.23a
    十八碳烯酸(C18:1n-74.11±0.24f4.39±0.05d3.97±0.00g4.35±0.04e4.64±0.01c5.60±0.01a
    亚油酸(C18:2n-6c0.65±0.01cd0.71±0.09cd0.81±0.04bc0.59±0.03d0.96±0.37b0.73±0.18cd
    γ-亚麻酸(C18:3n-63.35±0.23f5.11±0.14b5.58±0.08a5.02±0.11c4.59±0.00d3.33±0.03f
    花生一烯酸(C20:10.16±0.02e0.23±0.07cd0.24±0.00bc0.19±0.02de0.29±0.10ab0.24±0.01bc
    花生二烯酸(C20:20.29±0.02e0.39±0.07bc0.38±0.03c0.31±0.01e0.41±0.02ab0.33±0.01d
    二十碳三烯酸(C20:3n-61.14±0.14f1.91±0.16a1.73±0.06b1.57±0.04d1.47±0.01e0.77±0.03g
    二十碳三烯酸(C20:3n-31.15±0.02d1.11±0.01e1.19±0.01c1.21±0.04c1.26±0.02b1.44±0.01a
    二十二碳二烯酸(C22-20.23±0.04cd0.27±0.02b0.25±0.00c0.21±0.04d0.25±0.02c0.31±0.02a
    EPA(C20:5n-323.19±0.48b24.37±0.52a23.12±0.40b22.91±0.01b21.98±0.42c20.90±0.17d
    鲨油酸(C24:10.53±0.00d0.50±0.06d0.64±0.08c0.74±0.01b0.65±0.06c0.83±0.01a
    二十二碳五烯酸(C22:5n-31.33±0.01e1.41±0.05cd1.58±0.02b1.62±0.01a1.42±0.02c1.40±0.03d
    DHA(C22:6n-328.41±0.37a23.48±0.47e24.40±0.20d25.20±0.07c25.39±0.53c26.60±0.32b
    ∑SFA5.60±0.58b5.78±0.36b6.32±0.09a5.79±0.09b6.13±0.13ab5.89±0.13b
    ∑MUFA32.15±0.69b33.70±1.00b31.99±0.65b33.24±0.23b33.78±1.40b36.45±0.34a
    ∑PUFA59.74±1.32a58.76±1.23a59.04±0.84a58.64±0.36a57.73±1.41ab55.81±0.80b
    注:C18:1n-9c、C18:2n-6c中的c代表顺式;∑SFA为饱和脂肪酸总量;∑MUFA为单不饱和脂肪酸总量;∑PUFA为多不饱和脂肪酸总量;同行标注的不同小写字母表示显著性差异,P<0.05。
    下载: 导出CSV

    表  3   不同盐渍时间下盐渍狭鳕鱼片挥发性成分的信号强度

    Table  3   Signal intensities of the volatile organic compounds in dry-salted Alaska pollock fillets at different salting time

    挥发性有机物峰体积(峰强度)
    0 d3 d6 d9 d12 d15 d
    癸醛330.57±78.62a303.01±22.30a269.08±16.40a314.62±2.37a280.98±27.12a278.26±25.95a
    壬醛690.28±73.43a499.32±23.59b442.74±93.24bc406.64±37.08bc392.51±22.80c449.40±49.66bc
    辛醛362.19±27.06a271.53±22.29bc238.74±31.79c238.95±24.77c254.14±16.55bc294.68±17.15b
    苯甲醛101.09±3.31d185.80±22.18c217.29±14.48b190.22±6.91c244.81±9.58ab258.98±27.43a
    庚醛-M323.74±1.89b385.84±36.55ab414.39±19.23a359.13±30.72ab346.65±4.65ab390.49±23.45a
    庚醛-D42.74±5.64c69.71±7.14b74.73±11.11ab65.25±21.17ab60.05±7.52b81.95±3.40a
    己醛-M620.53±14.24c623.50±18.82c876.48±20.56a854.66±45.12a620.49±16.38c769.96±23.57b
    己醛-D248.25±5.55e540.41±37.62c928.44±59.88a781.83±96.15b419.23±24.87d917.21±58.74a
    丙醛640.53±16.82a133.36±1.59b74.68±8.69cd123.00±10.39b86.70±16.57c62.51±7.62d
    丁醛548.38±3.88a415.89±51.92bc439.47±26.95b361.27±12.07c341.82±20.82cd498.32±79.87ab
    戊醛90.98±2.39c99.10±4.33c101.31±6.72c252.77±14.84a209.67±3.13b280.06±37.04a
    2-甲基丁醛-M711.36±12.98a370.83±9.31b319.11±28.64c190.55±13.95e259.10±11.51d165.38±9.96f
    2-甲基丁醛-D3144.83±42.85a565.09±2.23d481.18±51.41d817.67±77.83c763.98±21.82c1010.45±71.59b
    3-甲基丁醛-M594.85±10.24ab545.18±19.00b525.23±52.77b574.13±43.49ab612.94±22.33a551.87±18.02b
    3-甲基丁醛-D1714.01±59.04a296.60±22.93bc250.23±74.20c350.92±87.94bc397.31±40.95b329.97±25.34bc
    2-甲基丙醛-M1811.01±24.11a852.48±41.69c956.31±20.28b638.69±23.09d884.72±52.54bc802.50±83.72c
    2-甲基丙醛-D557.49±42.68a36.44±9.48b33.28±2.16b23.34±2.54b29.63±1.57b32.02±7.00b
    3-甲硫基丙醛113.82±1.96a107.39±7.55a107.35±2.14a89.73±5.32b80.77±6.20b83.48±9.38b
    反式-2-戊烯醛20.44±2.73c69.60±12.59b79.76±5.20b72.93±15.39b95.16±5.07ab122.31±52.98a
    反式-2-己烯醛26.74±2.52d83.96±7.80c103.41±7.59c186.17±22.20b153.89±7.67b289.76±54.86a
    3-戊酮-M171.40±8.77b187.46±5.92a197.85±12.06a95.98±7.71c81.72±4.81d69.75±7.29d
    3-戊酮-D119.62±7.51d617.60±64.91a572.84±73.39a423.98±11.64b292.32±29.08c476.80±68.17b
    2-丁酮-M471.92±6.91a279.15±14.39d349.22±12.65b305.58±6.83c268.11±14.94d304.10±12.60c
    2-丁酮-D245.05±5.70a105.82±17.24c153.83±23.51b108.56±2.78c117.50±6.03c155.12±38.15b
    3-辛酮-M72.09±20.94b122.11±11.96b86.73±6.82b92.53±16.89b484.23±88.70a137.22±31.74b
    3-辛酮-D28.49±11.20b35.32±5.68b42.81±2.30b36.16±1.54b76.10±16.70a34.64±2.31b
    2-丙酮1121.08±93.19a312.77±11.19b213.59±21.63c190.16±19.24c179.33±16.17c171.52±36.87c
    2, 3-丁二酮297.33±5.68b298.99±6.33b250.80±1.31d226.80±6.29e514.52±22.89a268.67±8.51c
    2, 3-戊二酮192.22±2.91b226.07±6.92a219.29±7.53a242.81±17.83a207.43±18.57ab217.34±19.80a
    3-羟基-2-丁酮-D242.40±14.96c282.63±9.07b214.60±10.37d288.22±6.86b277.37±20.66b345.41±18.02a
    3-羟基-2-丁酮-M1004.53±27.35a876.22±26.31b783.00±38.23c630.59±22.03d668.28±4.51d532.04±17.72e
    5-甲基-3-庚酮55.44±7.55b86.59±9.53a89.76±9.40a79.56±3.43a83.70±4.39a88.35±2.85a
    6-甲基-5-庚烯-2-酮42.26±3.58d64.32±4.36ab48.76±1.12c67.31±5.74ab60.03±5.60b78.10±10.60a
    甲基异丁基酮175.15±8.28d144.22±7.11d160.09±9.60d486.45±19.75b376.20±21.33c638.74±25.31a
    3-甲基-1-丁醇-M69.58±10.81a62.09±3.11a47.59±4.13b28.78±4.13c40.71±2.57b25.82±2.10c
    3-甲基-1-丁醇-D63.88±2.38a37.72±4.33b35.40±4.10bc30.40±1.84c33.25±3.99bc24.67±3.68d
    乙醇603.29±18.07e1993.87±91.09b1080.91±52.82d2747.95±184.52a2160.47±363.92b1225.07±86.97c
    丙醇131.77±4.00c550.55±56.82a508.76±18.02ab439.92±36.38b491.86±2.91ab566.42±75.44a
    异丙醇511.33±51.55a226.66±18.46b207.84±8.25b179.44±26.69b178.22±13.99b182.81±18.47b
    正丁醇-M78.79±2.12e321.89±15.00d316.66±10.12d510.82±46.36b553.65±6.78a407.52±17.07c
    正丁醇-D160.26±2.85d163.83±9.98d128.02±8.38e1045.65±10.90b757.22±27.08c1239.65±25.82a
    1-己醇75.88±18.76a43.91±2.38b41.99±3.15b34.97±4.70b30.37±1.15b36.65±1.48b
    2-乙基己醇181.06±44.43bc122.71±1.41c135.99±17.46bc183.17±43.23b142.83±7.13bc484.85±151.12a
    乙酸乙酯-M1233.04±17.66b1066.04±37.23d1132.75±21.85c1183.02±15.80bc1142.04±26.35c1361.97±55.48a
    乙酸乙酯-D2072.51±108.07b1304.26±50.72c1363.17±46.54c1493.67±39.26c1288.08±54.85c2486.64±43.28a
    乙酸丁酯152.34±7.23a70.44±3.46b75.81±3.64b53.33±2.30c57.86±3.90c60.56±5.22c
    乙酸丙酯649.95±23.07a466.76±17.08b382.88±12.04c363.15±20.81c349.47±8.61c350.05±24.84c
    乙酸异戊酯27.51±4.45a22.85±2.90ab17.46±1.58b18.34±2.74ab23.97±4.26a25.96±2.68a
    戊酸70.71±1.56a26.98±3.98b20.40±6.18c17.79±2.68c20.07±3.85c17.63±1.10c
    2-甲基丙酸143.55±11.39cd174.94±17.74bc106.50±7.34d159.67±26.28bc389.23±38.98a200.98±36.30b
    二甲基二硫395.73±7.85c664.21±5.28a506.42±68.09b445.00±40.35b504.54±32.73b621.93±28.68a
    3-呋喃甲醇81.79±9.21d366.53±26.80c500.28±29.56ab454.27±44.90b492.56±12.98ab544.25±67.66a
    甲基吡嗪24.65±1.30d87.44±8.45a63.51±1.67b57.11±3.08cb66.51±1.48b69.20±15.98b
    注:部分物质后面的M、D分别代表该物质的单体与二聚体;同行标注的不同小写字母表示显著性差异,P<0.05。
    下载: 导出CSV
  • [1] 金龙玺. 伟大的鳕鱼[J]. 中国食品,2007(8):50−51. [JIN L X. Great cod[J]. China Food,2007(8):50−51. doi: 10.3969/j.issn.1000-1085.2007.08.027

    JIN L X. Great cod[J]. China Food, 2007(8): 50-51. doi: 10.3969/j.issn.1000-1085.2007.08.027

    [2]

    BARAT J M, RODRIGUEZ-BARONA S, ANDRES A, et al. Cod salting manufacturing analysis[J]. Food Research International,2003,36(5):447−453. doi: 10.1016/S0963-9969(02)00178-3

    [3] 沈月新. 水产食品学[M]. 北京: 中国农业出版社, 2000: 207−208.

    SHEN Y X. Aquatic foodstuff[M]. Beijing: China Agriculture Press, 2000: 207−208.

    [4] 张建梅. 鸡肉腌制过程亚硝酸盐与品质控制技术研究[D]. 烟台: 烟台大学, 2021.

    ZHANG J M. Study on nitrite and quality control technology in chicken meat curing process[D]. Yantai: Yantai University, 2021.

    [5] 陈娇娇, 蒋爱民. 腌制工艺对风味罗非鱼制品品质的影响[J]. 现代食品科技,2012,28(9):1128−1132. [CHEN J J, JIANG A M. Optimization of curing conditions for production of flavor tilapia[J]. Modern Food Science and Technology,2012,28(9):1128−1132.

    CHEN J J, JIANG A M. Optimization of curing conditions for production of flavor tilapia[J]. Modern Food Science and Technology, 2012, 28(9): 1128-1132.

    [6] 杨华, 张李玲, 梅清清. 不同腌制工艺处理对美国红鱼品质的影响[J]. 食品科学,2013,34(11):126−129. [YANG H, ZHANG L L, MEI Q Q. Effect of salting conditions on quality of salted Sciaenops ocellatu[J]. Food Science,2013,34(11):126−129. doi: 10.7506/spkx1002-6630-201311028

    YANG H, ZHANG L L, MEI Q Q. Effect of salting conditions on quality of salted Sciaenops ocellatu[J]. Food Science, 2013, 34(11): 126-129. doi: 10.7506/spkx1002-6630-201311028

    [7] 王腾, 宁正祥, 张业辉, 等. 超声波辅助盐渍对鲩鱼干品质和微观结构的影响[J]. 现代食品科技,2017,33(11):75−82. [WANG T, NING Z X, ZHANG Y H, et al. Effects of salting on quality and microstructure of dried grass crap assisted by ultrasound[J]. Modern Food Science and Technology,2017,33(11):75−82.

    WANG T, NING Z X, ZHANG Y H, et al. Effects of salting on quality and microstructure of dried grass crap assisted by ultrasound[J]. Modern Food Science and Technology, 2017, 33(11): 75-82.

    [8]

    NGUYEN M V, THORARINSDOTTIR K A, GUDMUNDSDOTTIR A, et al. The effects of salt concentration on conformational changes in cod (Gadus morhua) proteins during brine salting[J]. Food Chemistry,2010,125(3):1013−1019.

    [9] 曾令彬, 熊善柏, 王莉. 腊鱼加工过程中微生物及理化特性的变化[J]. 食品科学,2009,30(3):54−57. [ZENG L B, XIONG S B, WANG L. Changes in microbe quantity and physico-chemical properties during processing of cured silver carp[J]. Food Science,2009,30(3):54−57. doi: 10.3321/j.issn:1002-6630.2009.03.011

    ZENG L B, XIONG S B, WANG L. Changes in microbe quantity and physico-chemical properties during processing of cured silver carp[J]. Food Science, 2009, 30(3): 54-57. doi: 10.3321/j.issn:1002-6630.2009.03.011

    [10]

    ESAIASSEN M, QSTLI J, ELVEVOLL E O, et al. Brining of cod fillets: Influence on sensory properties and consumers liking[J]. Food Quality and Preference,2003,15(5):421−428.

    [11]

    JONSDOTTIR R, SVEINSDOTTIR K, MAGNUSSON H, et al. Flavor and quality characteristics of salted and desalted cod (Gadus morhua) produced by different salting methods[J]. Journal of Agricultural and Food Chemistry,2011,59(8):3893−904. doi: 10.1021/jf104203p

    [12]

    BARAT J M, RODRIGUEZ-BARONA S, ANDRES A, et al. Influence of increasing brine concentration in the cod-salting process[J]. Journal of Food Science,2002,67(5):1922−1925. doi: 10.1111/j.1365-2621.2002.tb08747.x

    [13]

    CUI Z, YAN H, MANOLI T, et al. Changes in the volatile components of squid (Illex argentinus) different cooking methods via headspace-gas chromatography-ion mobility spectrometry[J]. Food Science & Nutrition,2020,8(10):5748−5762.

    [14] 庞一扬, 余远江, 袁桃静, 等. 腌鱼腌制过程中挥发性成分的变化分析[J]. 现代食品科技,2020,36(8):281−289. [PANG Y Y, YU Y J, YUAN T J, et al. Analysis of volatile compounds changes of cured fish during the curing process[J]. Modern Food Science and Technology,2020,36(8):281−289.

    PANG Y Y, YU Y J, YUAN T J, et al. Analysis of volatile compounds changes of cured fish during the curing process[J]. Modern Food Science and Technology, 2020, 36(8): 281-289.

    [15] 蔡文强, 陈跃文, 董秀萍, 等. 真空干燥对鲟鱼肉理化品质及微观结构的影响[J]. 食品研究与开发,2020,41(13):24−30. [CAI W Q, CHEN Y W, DONG X P, et al. Effect of vacuum drying on the physicochemical quality and microstructure of sturgeon meat[J]. Food Research and Development,2020,41(13):24−30. doi: 10.12161/j.issn.1005-6521.2020.13.004

    CAI W Q, CHEN Y W, DONG X P, et al. Effect of vacuum drying on the physicochemical quality and microstructure of sturgeon meat[J]. Food Research and Development, 2020, 41(13): 24-30. doi: 10.12161/j.issn.1005-6521.2020.13.004

    [16] 中华人民共和国国家卫生和计划生育委员会, 中国国家食品药品监督管理总局. GB 5009.33-2016 食品中亚硝酸盐与硝酸盐的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the P.R.C., China Food and Drug Administration. GB 5009.33-2016 Determination of nitrite and nitrate in food[S]. Beijing: China Standards Press, 2016.

    [17] 谭青, 王际英, 李宝山, 等. n-3/n-6 HUFA对大菱鲆幼鱼生长性能、全鱼脂肪酸组成和血清生化指标的影响[J]. 水产学报,2018,42(5):754−765. [TAN Q, WANG J Y, LI B S, et al. Effect of dietary n-3/n-6 HUFA on growth performance, fatty acid composition of whole fish and serum biochemical indices in turbot (Scophthalmus maximus)[J]. Journal of Fisheries of China,2018,42(5):754−765.

    TAN Q, WANG J Y, LI B S, et al. Effect of dietary n-3/n-6 HUFA on growth performance, fatty acid composition of whole fish and serum biochemical indices in turbot (Scophthalmus maximus)[J]. Journal of Fisheries of China, 2018, 42(5): 754-765.

    [18] 刘家维, 黄昆仑, 梁志宏. 降解大豆胰蛋白酶抑制剂的短小芽孢杆菌菌株及其胞外蛋白的鉴定[J]. 现代食品科技,2020,36(2):129−136. [LIU J W, HUANG K L, LIANG Z H. Identification of soybean trypsin inhibitor-degrading bacillus pumilus strains and their extracellular proteins[J]. Modern Food Science and Technology,2020,36(2):129−136.

    LIU J W, HUANG K L, LIANG Z H. Identification of soybean trypsin inhibitor-degrading bacillus pumilus strains and their extracellular proteins[J]. Modern Food Science and Technology, 2020, 36(2): 129-136.

    [19] 沈晖, 吴鹏. 腌制时间对清蒸刀鱼食用品质及组织结构的影响[J]. 肉类研究,2020,34(3):34−38. [SHEN H, WU P. Effect of curing time on eating quality and microstructure of steamed saury[J]. Meet Research,2020,34(3):34−38. doi: 10.7506/rlyj1001-8123-20191120-283

    SHEN H, WU P. Effect of curing time on eating quality and microstructure of steamed saury[J]. Meet Research, 2020, 34(3): 34-38. doi: 10.7506/rlyj1001-8123-20191120-283

    [20]

    ZHANG Q, DING Y, GU S, et al. Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS[J]. Food Research International,2020,137:109339. doi: 10.1016/j.foodres.2020.109339

    [21] 鲁珺. 液氮深冷速冻对带鱼和银鲳品质及其肌肉组织的影响[D]. 杭州: 浙江大学, 2015.

    LU J. Effect of crvogenic freezing by liquid nitrogen on the quality and microstructure of_ hairtail and silver pomfret[D]. Hangzhou: Zhejiang University, 2015.

    [22]

    WU Y Y, LIU F J, LI L H, et al. Isolation and identification of nitrite-degrading lactic acid bacteria from salted fish[J]. Advanced Materials Research,2012,393-395:828−834.

    [23] 中华人民共和国国家卫生和计划生育委员会. GB 2760-2014 食品添加剂使用标准[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the P.R.C.. GB 2760-2014 Standard for use of food additives[S]. Beijing: China Standards Press, 2016.

    [24] 杨贤庆, 樊丽琴, 陈胜军, 等. 咸鱼干腌过程中亚硝酸盐和硝酸盐的含量变化及其相关性分析[J]. 食品与发酵工业,2009,35(10):55−58. [YANG X Q, FAN L Q, CHEN S J, et al. Change of nitrite and nitrate content during the processing of dry-cured salted fish processing[J]. Science and Technology of Food Industry,2009,35(10):55−58.

    YANG X Q, FAN L Q, CHEN S J, et al. Change of nitrite and nitrate content during the processing of dry-cured salted fish processing[J]. Science and Technology of Food Industry, 2009, 35(10): 55-58.

    [25] 刘敏. 腌制水产品中亚硝酸盐产生的条件研究与应用[D]. 舟山: 浙江海洋学院, 2015.

    LIU M. Study on curing condition and application of nitrite in cured seafood[D]. Zhoushan: Zhejiang Ocean University, 2015.

    [26] 郭雅. 不同腌制工艺对风干鳊鱼品质影响研究[D]. 南京: 南京师范大学, 2016.

    GUO Y. Effects of different curing technology on quality of air-drying Parabramis pekinensis[D]. Nanjing: Nanjing Normal University, 2016.

    [27] 耿翠竹. 宣恩火腿加工过程中蛋白质降解规律及其对火腿风味的影响[D]. 武汉: 武汉轻工大学, 2017.

    GENG C Z. Protein degradation and its effect on ham flavor during the processing of Xuan' en ham[D]. Wuhan: Wuhan Polytechnic University, 2017.

    [28]

    THORARINSDOTTIR K A, ARASON S, BOGASON S G, et al. The effects of various salt concentrations during brine curing of cod (Gadus morhua)[J]. International Journal of Food Science & Technology,2004,39(1):79−89.

    [29]

    GUDRUN O, ROSA J, LAUZON H L, et al. Characterization of volatile compounds in chilled cod (Gadus morhua) fillets by gas chromatography and detection of quality indicators by an electronic nose[J]. Journal of Agricultural and Food Chemistry,2005,53(26):10140−10147. doi: 10.1021/jf0517804

    [30]

    VIDAL N P, MANZANOS M J, GOICOECHEA E, et al. Influence of different salting processes on the evolution of the volatile metabolites of vacuum-packed fillets of farmed and wild sea bass (Dicentrarchus labrax) stored under refrigeration conditions: A study by SPME-GC/MS[J]. Journal of the Science of Food and Agriculture,2017,97(3):967−976. doi: 10.1002/jsfa.7821

图(6)  /  表(3)
计量
  • 文章访问数:  201
  • HTML全文浏览量:  54
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-01
  • 网络出版日期:  2022-04-18
  • 刊出日期:  2022-06-14

目录

/

返回文章
返回