• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

产ACE抑制肽菌株的筛选及其在模拟消化道环境中的活性分析

邵伯悦, 马春丽, 余鹏飞, 王家栩, 贾丽丽

邵伯悦,马春丽,余鹏飞,等. 产ACE抑制肽菌株的筛选及其在模拟消化道环境中的活性分析[J]. 食品工业科技,2021,42(18):142−147. doi: 10.13386/j.issn1002-0306.2021020033.
引用本文: 邵伯悦,马春丽,余鹏飞,等. 产ACE抑制肽菌株的筛选及其在模拟消化道环境中的活性分析[J]. 食品工业科技,2021,42(18):142−147. doi: 10.13386/j.issn1002-0306.2021020033.
SHAO Boyue, MA Chunli, YU Pengfei, et al. Screening of ACE-inhibiting Peptide Producing Strains and Their Activity Analysis in Simulated Digestive Tract Environment[J]. Science and Technology of Food Industry, 2021, 42(18): 142−147. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020033.
Citation: SHAO Boyue, MA Chunli, YU Pengfei, et al. Screening of ACE-inhibiting Peptide Producing Strains and Their Activity Analysis in Simulated Digestive Tract Environment[J]. Science and Technology of Food Industry, 2021, 42(18): 142−147. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020033.

产ACE抑制肽菌株的筛选及其在模拟消化道环境中的活性分析

详细信息
    作者简介:

    邵伯悦(1996−),男,硕士研究生,研究方向:乳品科学,E-mail:shaoboyue17@163.com

    通讯作者:

    马春丽(1978−),女,博士,副教授,研究方向:乳品科学,E-mail:machunli8@163.com

  • 中图分类号: TS201.3

Screening of ACE-inhibiting Peptide Producing Strains and Their Activity Analysis in Simulated Digestive Tract Environment

  • 摘要: 为了筛选出对血管紧张素转换酶(angiotensin-converting enzyme,ACE)抑制活性较高并且具有较强的耐酸耐胆盐和耐盐的乳酸菌,对实验室保存的27株乳酸菌进行了产酸能力、蛋白水解活力、ACE抑制活性、模拟胃肠道消化及酸、胆盐和盐耐受性的测定。结果显示,菌株M3的ACE抑制率可达71.94%±1.39%,具有较好的蛋白水解活力和产酸能力,蛋白水解活力为(86.66±3.51)μg/mL亮氨酸,滴定酸度为(71.67±2.86)°T。菌株M3经人工胃肠液分别处理3 h后,ACE抑制率为74.96%±1.73%;在pH3的环境中3 h,耐受性为14.34%±1.21%,活菌数能达到7 lg CFU mL−1以上;在含有0.3%胆盐的培养基中3 h,耐受性为37.50%±2.47%;在含有4% NaCl的培养基中24 h,耐受性为37.32%±1.84%。该菌经16S rDNA鉴定为Lactobacillus (Lb.) paracasei subsp. paracasei M3。因此,菌株Lb. paracasei subsp. paracasei M3可用作发酵牛乳富产ACE抑制肽且能耐受消化道环境具有益生菌潜力的菌株。
    Abstract: The acid production capacity, protein hydrolysis activity, ACE inhibition activity, simulated gastrointestinal digestion and acid, bile salt and salt tolerance of 27 strains of lactic acid bacteria kept in the laboratory were determined in order to screen for those with high angiotensin-converting enzyme (ACE) inhibition activity and high acid, bile salt and salt tolerance. The results showed that the ACE inhibition rate of strain M3 could reach 71.94%±1.39%, with good protein hydrolysis activity and acid production ability, the protein hydrolysis activity was (86.66±3.51) μg/mL leucine, and the titration acidity was (71.67±2.86) °T. The ACE inhibition rate of strain M3 was 74.96%±1.73% after 3 h of treatment with artificial gastrointestinal fluid, respectively. It was treated for 3 h in pH3 broth medium and the survival rate was 14.34%±1.21% and the viable count could reach more than 7 lg CFU mL−1. It was treated for 3 h in broth medium containing 0.3% bile salts and the survival rate was 37.50%±2.47%. It was treated for 24 h in broth medium containing 4% NaCl and the survival rate was 37.32%±1.84%. The bacterium was identified by 16S rDNA as Lactobacillus (Lb.) paracasei subsp. paracasei M3. Thus, Lb. paracasei subsp. paracasei M3 can be used as an ACE-inhibiting peptide-rich strain for fermenting cow’s milk and tolerating the digestive environment with probiotic potential.
  • 我国高血压患者的人数持续走高,2019年约有2.45亿高血压患者,且患者越来越年轻化[1],由于高血压是引起心脑血管疾病和中风的危险因素[2],因此很多学者就高血压问题进行了长期且深入的研究。肾素-血管紧张素-醛固酮系统参与调节血压的一部分,主要是由血管紧张素转换酶(ACE)将血管紧张素I转化为血管紧张素II,是系统的主要组成部分之一[3];此外,缓激肽也会被ACE所降解,从而达到舒张血管的作用。因此,通过抑制ACE活性并防止血管紧张素转化为有效形式化合物的方法,可以减轻高血压症状[4]。尽管降压药在调节血压中起着基本作用,但它们通常会出现多种副作用,因此,许多研究人员在食品中寻求诸如生物肽之类的ACE抑制物质,以使此类肽可用于高血压的预防和治疗[5-6]

    ACE抑制肽是蛋白质水解生成的一种小分子肽,通过抑制ACE活性,让血管紧张素不能转化,从而达到缓解高血压的作用[7]。有研究报道,一些乳酸菌Lb. helveticusLb. delbrueckii subsp. bulgaricusLc. lactis subsp. cremorisLc. lactis subsp. lactis biovar. diacetylactis在发酵过程中通过水解牛奶中的蛋白可以释放ACE抑制肽[8-9],且已有几种ACE抑制肽在发酵乳[10]和干酪[11]中被鉴定出来,此外,通过模拟计算的方法还探究ACE抑制肽的作用机制[12-13]。Solanki等[14]Lb. rhamnosus MTCC 5945制备发酵驼奶,分析其ACE抑制活性,并分离鉴定了新的ACE抑制肽。

    本试验目的是从27株乳酸菌中,筛选出一株发酵牛乳富产ACE抑制肽且具有益生菌潜力的菌株,为抗高血压发酵乳的研发提供科学的数据。

    实验室保存的27株乳酸菌  11株菌C2、C5~C13、Q6分离自干酪,13株菌M1~M13分离自生牛乳,另外3种为双歧杆菌(Bifidobacterium)、鼠李糖乳杆菌(Lb. rhamnosus)、植物乳杆菌(Lb. plantarum);MRS液体培养基 青岛海博生物;脱脂乳粉 纽仕兰新云电子商务有限公司;马尿酰-组胺酰-亮氨酸(HHL)、ACE(来自兔肺,酶活0.1 UN) 上海源叶;胃蛋白酶(1:3000)、胰蛋白酶(1:250) 大连美仑生物技术公司;邻苯二甲醛 Biotopped公司;乙酸乙酯 天津市富宇精细化工有限公司;其他试剂 均为国产分析纯。

    GL-21M高速冷冻离心机 湖南湘仪实验仪器开发有限公司;T6新世纪紫外-可见分光光度计 北京普析通用仪器有限责任公司;数显搅拌水浴锅 常州赛普实验仪器厂;雷磁PHS-3C pH计 上海仪电科学仪器股份有限公司。

    从−80 ℃冰箱中取出保藏的27株乳酸菌,在MRS液体培养基中37 ℃活化12 h,将活化的菌株,按照2%(v/v)的接种量接种到灭菌复原脱脂乳(10%,w/v)中,37 ℃培养至乳凝固后,转移至4 ℃冰箱,以停止进一步酸化。取样测定pH、滴定酸度、蛋白水解活力和ACE抑制率。

    将凝固的发酵乳漩涡震荡后取5 mL进行pH测定。

    酸度值以吉尔涅尔度(°T)表示,方法参照GB 5009.239-2016。

    采用OPA法对蛋白水解度进行测定[15]。以亮氨酸为标准溶液,样品的蛋白水解活力以μg/mL亮氨酸为单位。

    取2.5 g样品,加入1 mL去离子水,5 mL 1.0%的三氯乙酸,振荡混匀后静置,3000×g离心5 min,取0.4 mL上清液与3 mL OPA溶液混匀后静置2 min,在340 nm测吸光值。

    发酵乳清的制备:测定样品pH,将pH调至4.6后,5000 r/min离心15 min,保留上清液,再将pH调节至8.3后,5000 r/min离心15 min,保留上清液。

    方法参照Cushman等[16]、张秋红[17]并略作修改。取5 mL离心管,加入5 mmol/L HHL底物为0.05 mol/L的硼酸钠缓冲液200 μL,再加入100 μL待测乳清,混合,在37 ℃水浴中预热3 min,加入20 μL ACE酶液,在37 ℃水浴中等待30 min,再加入250 μL 1 mol/L盐酸终止反应。加入1.7 mL乙酸乙酯,振荡15 s,4000 r/min离心10 min,取上层的1 mL乙酸乙酯,加热挥发去除有机溶剂,再加入3 mL去离子水,并振荡摇匀,用紫外分光光度计在228 nm测定样品吸光值。按照以下公式计算ACE抑制率:

    ACE抑制率(%)=BABC×100

    式中,A为样品组吸光度值;B为对照组吸光度值;C为空白组吸光度值。

    人工胃液、肠液参照药典[18]进行配制。参照陈仪婷等[19]方法并略作修改。取样品5 mL,测定其乳清样品的ACE抑制率;将剩余发酵乳以10%添加到人工胃液中,然后37 ℃水浴消化3 h,沸水浴加热10 min以终止反应,取样测定其ACE抑制率;再将其以10%添加到人工肠液中,然后37 ℃水浴消化3 h,沸水浴加热10 min以终止反应,再取样测定其ACE抑制率。

    参照黄燕燕等[20]方法并略作修改。将MRS培养基的pH分别调整为3.0、4.0、5.0,pH为6.0的MRS培养基为对照组,分装至各试管。以2%接种量分别接种至上述MRS培养基中,37 ℃培养3 h后取菌液,进行菌落计数,计算酸耐受性,即:

    酸耐受性(%)=NtN0×100

    其中:Nt、N0分别为试验组样品和对照组样品中的活菌数(CFU mL−1)。

    参照陈大卫等[21]方法并略作修改。将乳酸菌以2%量接种于含有0.3%胆盐的MRS液体培养基中,于37 ℃培养3 h,以不加胆盐的MRS肉汤培养基为对照组,进行菌落计数。按下列公式计算菌株的胆盐耐受性:

    胆盐耐受性(%)=NtN0×100

    其中:Nt 、N0分别为试验组样品和对照组样品中的活菌数(CFU mL−1)。

    参照孙杰等[22]方法并略作修改。将乳酸菌以2%量接种于含NaCl质量浓度为4 g/100 mL的MRS培养基中,37 ℃培养24 h后取菌液,进行菌落计数,以不加NaCl的MRS培养基中的菌落数为对照,计算盐耐受性,即:

    盐耐受性(%)=NtN0×100

    其中:Nt、N0分别为试验组样品和对照组样品中的活菌数(CFU·mL−1)。

    将筛选的菌株送至吉林省库美生物科技有限公司进行16S rDNA鉴定,并将鉴定结果经RDP数据库[23-24]比对后,使用MEGA 7.0软件[25]进行系统发育树的构建。

    采用SPSS22.0统计软件进行统计学分析,数据均采用X¯±SD表示,并采用方差分析,相关性比较模块,采用Origin8.0进行作图,每个试验重复3次。

    对实验室保藏的27株乳酸菌进行发酵实验,测定pH、滴定酸度、蛋白水解活力及ACE抑制率,所得结果见表1

    表  1  发酵乳pH、滴定酸度、蛋白水解活力、ACE抑制活性结果
    Table  1.  Results of fermented milk pH, titration acidity, protein hydrolysis activity, and ACE inhibition activity
    样品pH滴定酸度蛋白水解活力ACE抑制率(%)
    (°T)(μg/mL亮氨酸)
    M114.63 ± 0.0377.47 ± 1.3393.14 ± 3.0276.84 ± 1.98
    M34.75 ± 0.0671.67 ± 2.8686.66 ± 3.5171.94 ± 1.39
    M104.42 ± 0.0384.53 ± 3.87119.02 ± 6.3166.15 ± 3.30
    Bifidobacterium4.79 ± 0.0268.33 ± 2.5371.56 ± 0.7965.26 ± 2.02
    M124.95 ± 0.0361.20 ± 0.87108.96 ± 1.9462.81 ± 2.45
    M64.72 ± 0.0376.53 ± 2.2387.97 ± 2.4761.02 ± 1.97
    M95.02 ± 0.0658.60 ± 1.38110.35 ± 3.6459.69 ± 0.95
    M24.65 ± 0.0376.13 ± 2.4771.38 ± 2.6857.68 ± 0.85
    C64.99 ± 0.0357.07 ± 1.4091.20 ± 1.5555.23 ± 2.74
    C74.77 ± 0.0671.27 ± 1.33115.81 ± 2.1153.45 ± 0.77
    M54.45 ± 0.0382.27 ± 1.9098.47 ± 3.2052.34 ± 0.58
    C114.98 ± 0.0257.73 ± 1.86141.99 ± 1.6943.43 ± 1.72
    C135.07 ± 0.0448.33 ± 0.5079.75 ± 1.7441.87 ± 2.10
    M44.91 ± 0.0259.47 ± 2.4783.08 ± 3.0841.65 ± 0.82
    M74.96 ± 0.0359.27 ± 2.2096.11 ± 4.3539.87 ± 1.02
    C24.80 ± 0.0259.00 ± 1.6053.38 ± 2.4131.45 ± 1.71
    Q64.92 ± 0.0467.67 ± 2.8747.14 ± 1.9629.71 ± 1.34
    M135.03 ± 0.0755.27 ± 1.22105.69 ± 2.4228.95 ± 2.81
    C125.08 ± 0.0247.20 ± 0.8779.87 ± 0.4626.73 ± 4.41
    M15.09 ± 0.0245.73 ± 1.1381.14 ± 2.7625.84 ± 0.63
    C95.01 ± 0.1058.47 ± 2.8795.62 ± 2.8523.39 ± 2.12
    M84.92 ± 0.0157.13 ± 2.5387.99 ± 3.1122.27 ± 0.67
    C85.02 ± 0.0359.53 ± 1.4259.20 ± 2.0620.53 ± 1.41
    Lb. rhamnosus5.03 ± 0.0257.60 ± 0.9243.62 ± 2.1714.14 ± 2.05
    C105.00 ± 0.0357.53 ± 1.4289.80 ± 2.3011.80 ± 1.94
    Lb. plantarum5.00 ± 0.0158.47 ± 1.2957.93 ± 1.794.01 ± 0.81
    C55.08 ± 0.0249.07 ± 2.1492.59 ± 2.373.79 ± 1.79
    下载: 导出CSV 
    | 显示表格

    结果显示,不同菌株间的这些性能存在很大差异,由不同乳酸菌发酵酸乳的ACE抑制活性在60%以上的有6株,它们是M11、M3、M10、Bifidobacterium、M12、M6,抑制活性最高的是菌株M11,抑制率为76.84%±1.98%,其次是M3,抑制率为71.94%±1.39%。ACE抑制率小于30%的有11株乳酸菌,最低的只有3.79%±1.79%。样品的pH在4.40~5.10之间,滴定酸度在45~85 °T之间,菌株M10、M5、M11、M2、M6、M3、C7具有相对较高的产酸性能。蛋白水解活性在100 μg/mL亮氨酸以上的菌株有6株,它们是C11、M10、C7、M9、M12、M13。

    乳酸菌发酵脱脂乳的ACE抑制活性作为筛选菌株的直接指标,筛选出发酵乳ACE抑制活性在60%以上的菌株6株。乳酸菌M11、M3、M10、M12和M6的蛋白水解能力都在80 μg/mL亮氨酸以上,具有相对较高的蛋白水解能力;乳酸菌M11、M3、M10和M6的滴定酸度都在70 °T以上,具有较好的产酸能力,因此选择M3、M6、M10和M11进行接下来的试验。

    图1所示,不同乳酸菌的发酵乳经人工胃液和肠液作用后,所得ACE抑制活性变化有很大差异。菌株M3在胃液和肠液作用后,ACE抑制活性先升高后降低,但仍显著高于消化前(P<0.05),为74.96%±1.73%,且显著高于其他菌株(P<0.05);M6、M10、M11在胃液和肠液作用后均逐渐降低,分别为49.21%±2.20%、58.80%±3.67%、62.66%±2.68%。菌株M3先上升的原因可能是因为在胃蛋白酶的作用下,一些大的氨基酸残基被水解成小分子的多肽,使得ACE抑制肽的浓度变大,抑制活性增强;而在胰蛋白酶的作用下,一些小分子多肽被进一步分解成无活性的游离氨基酸或者是氨基酸残基,使得ACE抑制活性下降。对于另外3株乳酸菌,在胃蛋白酶及胰蛋白酶作用下ACE抑制活性逐渐下降,可能是因为原有的具有ACE抑制活性的肽被分解,无活性的肽或者游离氨基酸比例增大造成的[26-27]

    图  1  人工模拟胃液肠液对ACE抑制活性的影响
    注:不同小写字母不同表示同一阶段不同样品差异显著(P<0.05),不同大写字母表示同一样品不同阶段差异显著(P<0.05)。
    Figure  1.  Effect of artificial simulated gastric and intestinal fluids on ACE inhibitory activity

    益生菌在人体中发挥益生菌功能的前提是能够顺利通过胃酸构成的生物屏障,稳定粘附于肠上皮细胞,实现定植[28]。食物在胃中存留的时间大约为1~3 h[29],因此选择3 h作为耐受时间。在食用乳制品后,胃液的pH一般在3左右[30],因此,能够在胃肠道中发挥作用的乳酸菌必须对酸有很强的耐受性。试验菌株酸耐受性结果如图2所示,在pH为3.0~5.0的范围内,随着酸度的增加,菌株的酸耐受性在逐渐下降,在pH3时,菌株的酸耐受性降至10%~30%,菌落数大约为7 lg CFU mL−1,依然满足益生菌的推荐摄入量大于6 lg CFU mL−1剂量[30]。因此,菌株M3、M6、M10、M11均能耐受胃酸环境且保持一定的活菌数。

    图  2  菌株的酸耐受性
    注:不同小写字母表示同一pH不同样品差异显著(P<0.05),不同大写字母表示同一样品不同pH差异显著(P<0.05)。
    Figure  2.  Acid tolerance of the strains

    人体小肠内的胆盐含量约为0.3%,食物通过一般需要1~4 h。因此,乳酸菌应具有一定的胆盐抗性,并在经过小肠时仍能维持活力,发挥益生菌作用[31]。试验菌株的胆盐耐受性如表2所示,菌株M3经0.3%胆盐作用3 h后,胆盐的耐受性为37.50%±2.47%,显著高于其他菌株(P<0.05),M10最低为24.09%±0.31%。根据菌落计数的结果,经0.3%胆盐作用3 h后,4株试验菌株活菌数均高于益生菌推荐摄入量。因此,4株乳酸菌均具有胆盐耐受性。

    表  2  菌株的胆盐耐受性
    Table  2.  Bile salt tolerance of the strains
    编号菌数(lg CFU mL−1胆盐耐受性(%)
    0% 胆盐0.3% 胆盐
    M37.99±0.077.56±0.0737.50±2.47a
    M68.28±0.037.69±0.0325.77±0.68bc
    M108.70±0.068.08±0.0424.09±0.31c
    M118.52±0.047.95±0.0327.24±0.58b
    注:不同小写字母表示不同样品差异显著(P<0.05);表3同。
    下载: 导出CSV 
    | 显示表格

    乳酸菌的耐盐性也是评价乳酸菌品质的一个重要指标。NaCl在人体内的质量浓度为1~4 g/mL[32]。高盐会导致高渗透压,细胞失水造成胞质分离[33]表3所示为试验菌株的盐耐受性结果,添加4% NaCl后,菌株的耐盐性大约在20%~40%,其中M3的盐耐受性是最高的,为37.32%±1.84%,说明高盐抑制了菌株的存活率,而乳酸菌有一定的盐耐受性,使得菌落计数的结果在7 lg CFU mL−1以上,依然满足推荐益生菌摄入的最低摄入量。因此,四株乳酸菌均具有一定的盐耐受性,其中M3的盐耐受性更强。

    表  3  菌株的盐耐受性
    Table  3.  Salt tolerance of the strains
    编号菌数(lg CFU mL−1盐耐受性(%)
    0% NaCl4% NaCl
    M37.99 ± 0.077.56 ± 0.0537.32 ± 1.84a
    M68.28 ± 0.037.65 ± 0.0323.67 ± 0.80b
    M108.70 ± 0.067.99 ± 0.0519.81 ± 0.58c
    M118.52 ± 0.047.84 ± 0.0320.65 ± 0.30c
    下载: 导出CSV 
    | 显示表格

    经筛选后发现,菌株M3的ACE抑制活性为71.94%±1.39%,能耐受人工胃肠液环境,且该菌具有较好的产酸性能和蛋白水解活性,能耐受模拟消化环境,保持活菌数量。送样测定M3菌株的16S rDNA序列,并经RDP数据库比对并构建系统发育树(图3)后发现,M3菌株与Lactobacillus paracasei subsp. paracasei的同源性在99%以上,因此乳酸菌菌株M3是Lb. paracasei subsp. paracasei

    图  3  菌株系统发育树
    Figure  3.  Phylogenetic tree of strains

    本研究显示,试验菌株间的ACE抑制活性存在较大差异,经初筛获得菌株M3、M6、M10和M11有较高的ACE抑制活性,同时具有较好的产酸或蛋白水解性能,经模拟胃肠消化后,菌株M3的ACE抑制活性呈现先上升后下降的趋势并保持较高活性,另外3株乳酸菌的ACE抑制活性都呈现逐渐下降的趋势。在环境耐受性的试验中,4株乳酸菌都呈现出对酸、胆盐、盐的良好耐受性,菌落计数结果显示,都能满足推荐益生菌摄入量的最低量(6 lg CFU mL−1),尤其是M3菌株,呈现出更高的环境耐受性。M3菌株经16S rDNA菌株鉴定为Lb. paracasei subsp. paracasei。此外,该菌株如何抑制ACE活性以及在体内是否具有抗高血压能力,还需要进一步研究。

  • 图  1   人工模拟胃液肠液对ACE抑制活性的影响

    注:不同小写字母不同表示同一阶段不同样品差异显著(P<0.05),不同大写字母表示同一样品不同阶段差异显著(P<0.05)。

    Figure  1.   Effect of artificial simulated gastric and intestinal fluids on ACE inhibitory activity

    图  2   菌株的酸耐受性

    注:不同小写字母表示同一pH不同样品差异显著(P<0.05),不同大写字母表示同一样品不同pH差异显著(P<0.05)。

    Figure  2.   Acid tolerance of the strains

    图  3   菌株系统发育树

    Figure  3.   Phylogenetic tree of strains

    表  1   发酵乳pH、滴定酸度、蛋白水解活力、ACE抑制活性结果

    Table  1   Results of fermented milk pH, titration acidity, protein hydrolysis activity, and ACE inhibition activity

    样品pH滴定酸度蛋白水解活力ACE抑制率(%)
    (°T)(μg/mL亮氨酸)
    M114.63 ± 0.0377.47 ± 1.3393.14 ± 3.0276.84 ± 1.98
    M34.75 ± 0.0671.67 ± 2.8686.66 ± 3.5171.94 ± 1.39
    M104.42 ± 0.0384.53 ± 3.87119.02 ± 6.3166.15 ± 3.30
    Bifidobacterium4.79 ± 0.0268.33 ± 2.5371.56 ± 0.7965.26 ± 2.02
    M124.95 ± 0.0361.20 ± 0.87108.96 ± 1.9462.81 ± 2.45
    M64.72 ± 0.0376.53 ± 2.2387.97 ± 2.4761.02 ± 1.97
    M95.02 ± 0.0658.60 ± 1.38110.35 ± 3.6459.69 ± 0.95
    M24.65 ± 0.0376.13 ± 2.4771.38 ± 2.6857.68 ± 0.85
    C64.99 ± 0.0357.07 ± 1.4091.20 ± 1.5555.23 ± 2.74
    C74.77 ± 0.0671.27 ± 1.33115.81 ± 2.1153.45 ± 0.77
    M54.45 ± 0.0382.27 ± 1.9098.47 ± 3.2052.34 ± 0.58
    C114.98 ± 0.0257.73 ± 1.86141.99 ± 1.6943.43 ± 1.72
    C135.07 ± 0.0448.33 ± 0.5079.75 ± 1.7441.87 ± 2.10
    M44.91 ± 0.0259.47 ± 2.4783.08 ± 3.0841.65 ± 0.82
    M74.96 ± 0.0359.27 ± 2.2096.11 ± 4.3539.87 ± 1.02
    C24.80 ± 0.0259.00 ± 1.6053.38 ± 2.4131.45 ± 1.71
    Q64.92 ± 0.0467.67 ± 2.8747.14 ± 1.9629.71 ± 1.34
    M135.03 ± 0.0755.27 ± 1.22105.69 ± 2.4228.95 ± 2.81
    C125.08 ± 0.0247.20 ± 0.8779.87 ± 0.4626.73 ± 4.41
    M15.09 ± 0.0245.73 ± 1.1381.14 ± 2.7625.84 ± 0.63
    C95.01 ± 0.1058.47 ± 2.8795.62 ± 2.8523.39 ± 2.12
    M84.92 ± 0.0157.13 ± 2.5387.99 ± 3.1122.27 ± 0.67
    C85.02 ± 0.0359.53 ± 1.4259.20 ± 2.0620.53 ± 1.41
    Lb. rhamnosus5.03 ± 0.0257.60 ± 0.9243.62 ± 2.1714.14 ± 2.05
    C105.00 ± 0.0357.53 ± 1.4289.80 ± 2.3011.80 ± 1.94
    Lb. plantarum5.00 ± 0.0158.47 ± 1.2957.93 ± 1.794.01 ± 0.81
    C55.08 ± 0.0249.07 ± 2.1492.59 ± 2.373.79 ± 1.79
    下载: 导出CSV

    表  2   菌株的胆盐耐受性

    Table  2   Bile salt tolerance of the strains

    编号菌数(lg CFU mL−1胆盐耐受性(%)
    0% 胆盐0.3% 胆盐
    M37.99±0.077.56±0.0737.50±2.47a
    M68.28±0.037.69±0.0325.77±0.68bc
    M108.70±0.068.08±0.0424.09±0.31c
    M118.52±0.047.95±0.0327.24±0.58b
    注:不同小写字母表示不同样品差异显著(P<0.05);表3同。
    下载: 导出CSV

    表  3   菌株的盐耐受性

    Table  3   Salt tolerance of the strains

    编号菌数(lg CFU mL−1盐耐受性(%)
    0% NaCl4% NaCl
    M37.99 ± 0.077.56 ± 0.0537.32 ± 1.84a
    M68.28 ± 0.037.65 ± 0.0323.67 ± 0.80b
    M108.70 ± 0.067.99 ± 0.0519.81 ± 0.58c
    M118.52 ± 0.047.84 ± 0.0320.65 ± 0.30c
    下载: 导出CSV
  • [1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志,2020,39(9):833−854. [China Cardiovascular Health and Disease Report Compilation Group. Annual report on cardiovascular health and diseases in China 2019[J]. Journal of Cardiovascular & Pulmonary Diseases,2020,39(9):833−854.
    [2]

    Nawaz K A A, David S M, Murugesh E, et al. Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanus cajan)[J]. Phytomedicine, 2017(Dec 1),36:1-7.

    [3]

    Fagyas M, Úri K, Siket I M, et al. New perspectives in the renin-angiotensin-aldosterone system (RAAS) I: endogenous angiotensin converting enzyme (ACE) inhibition[J]. PloS One,2014,9(4):e87843. doi: 10.1371/journal.pone.0087843

    [4]

    Seppo L, Jauhiainen T, Poussa T, et al. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects[J]. American Journal of Clinical Nutrition,2003,77(2):326−330. doi: 10.1093/ajcn/77.2.326

    [5]

    Wu Q, Li Y, Peng K, et al. Isolation and characterization of three antihypertension peptides from the mycelia of Ganoderma lucidum (agaricomycetes)[J]. Journal of Agricultural and Food Chemistry,2019,67:8149−8159. doi: 10.1021/acs.jafc.9b02276

    [6]

    Priyanto A D, Doerksen R J, Chang C I, et al. Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins[J]. Journal of Proteomics,2015,128:424−435. doi: 10.1016/j.jprot.2015.08.018

    [7] 董喜梅, 包艳, 张勇, 等. 国内外发酵豆乳研究发展现状[J]. 大豆科学,2010,29(5):883−888. [Dong X M, Bao Y, Zhang Y, et al. Research progress on domestic and international fermented soymilk[J]. Soybean Science,2010,29(5):883−888.
    [8]

    Fitzgerald R J, Murray B A. Bioactive peptides and lactic fermentations[J]. International Journal of Dairy Technology,2006,59(2):118−125. doi: 10.1111/j.1471-0307.2006.00250.x

    [9]

    Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality[J]. International Dairy Journal,2006,16(9):945−960. doi: 10.1016/j.idairyj.2005.10.012

    [10]

    Ugwu C P, Abarshi M M, Mada S B, et al. Camel and horse milk casein hydrolysates exhibit angiotensin converting enzyme inhibitory and antioxidative effectsin vitro and in silico[J]. International Journal of Peptide Research & Therapeutics,2019,25(4):1595−16.

    [11]

    Martini S, Conte A, Tagliazucchi D. Effect of ripening and in vitro digestion on the evolution and fate of bioactive peptides in Parmigiano-Reggiano cheese[J]. International Dairy Journal,2020,105:104668. doi: 10.1016/j.idairyj.2020.104668

    [12]

    Rani S, Pooja K, Pal G K. Exploration of potential angiotensin converting enzyme inhibitory peptides generated from enzymatic hydrolysis of goat milk proteins[J]. Biocatalysis and Agricultural Biotechnology,2017,11:83−88. doi: 10.1016/j.bcab.2017.06.008

    [13]

    Ashok A, Brijesha N, Aparna H S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity[J]. European Journal of Medicinal Chemistry,2019,180:99−110. doi: 10.1016/j.ejmech.2019.07.009

    [14]

    Solanki D, Hati S. Considering the potential of Lactobacillus rhamnosus for producing angiotensin I-converting enzyme (ACE) inhibitory peptides in fermented camel milk (Indian breed)[J]. Food Bioscience,2018:16−22.

    [15] 林虬, 黄薇, 宋永康, 等. 棉籽蛋白水解物水解度3种测定方法的比较[J]. 福建农业学报,2011,26(6):1076−1080. [Lin Q, Huang W, Song Y K, et al. Comparing three methods in determining hydrolytic degree of cottonseed protein[J]. Fujian Journal of Agricultural Science,2011,26(6):1076−1080. doi: 10.3969/j.issn.1008-0384.2011.06.030
    [16]

    Cushman D W, Cheng H S. Spectrophotometric assay and properties of the angiotensin- converting enzyme of rabbit lung[J]. Biochemical Pharmacology,1971,20:1637−1648. doi: 10.1016/0006-2952(71)90292-9

    [17] 张秋红. 植物乳杆菌发酵羊乳产ACE抑制肽优化及分离纯化[D]. 西安: 陕西科技大学, 2014.

    Zhang Q H. Optimization and purification of ace inhibitory peptides from goat milk fermented by lactobacillus plantarum[D]. Xi’an: Shaanxi University of Science and Technology, 2014.

    [18] 国家药典委员会. 中华人民共和国药典 (第二版)[M]. 北京: 中国医药科技出版社, 2005.

    National Pharmacopoeia Commission. Chinese pharmacopoe (second edition)[M]. Beijing: China Medical Science and Technology Press, 2005.

    [19] 陈仪婷, 张红星, 谢远红, 等. 降胆固醇乳酸菌的筛选鉴定及其耐酸耐胆盐性能研究[J]. 食品与发酵工业,2018,44(5):29−33. [Chen Y T, Zhang H X, Xie Y H, et al. Selection of cholesterol- lowering lactic acid bacteria in vitro and study on it's tolerance of acid and bile salts[J]. Food and Fermentation Industries,2018,44(5):29−33.
    [20] 黄燕燕, 郭均, 黎恒希, 等. 降胆固醇乳酸菌的体外筛选及其降胆固醇机理探讨[J]. 食品科学,2018,6:95−101. [Huang Y Y, Guo J, Li H X, et al. In vitro screening of lactic acid bacteria for cholesterol-lowering activity and the underlying mechanism[J]. Food Science,2018,6:95−101. doi: 10.7506/spkx1002-6630-201811015
    [21] 陈大卫, 顾瑞霞, 鲁茂林, 等. 人源乳酸菌耐酸耐胆盐能力及降胆固醇作用研究[J]. 食品与机械,2017,33(10):1−5. [Chen D W, Gu R X, Lu M L, et al. Ability of acid and bile salt resistance of lactic acid bacteria and its cholesterol lowering effect from human origin[J]. Food & Machinery,2017,33(10):1−5.
    [22] 孙杰, 元少尉, 王秋燕, 等. 植物乳杆菌PUM1785抑菌作用及耐胆盐和耐盐性能[J]. 中国微生态学杂志,2020,32(10):1128−1133. [Sun J, Yuan S W, Wang Q Y, et al. Bacteriostasis, bile salt tolerance and salt tolerance of Lactobacillus plantarum PUM1785[J]. Chinese Journal of Microecology,2020,32(10):1128−1133.
    [23]

    Cole J R, Wang Q, Cardenas E, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis[J]. Nucleic Acids Research,2009,37:D141−D145. doi: 10.1093/nar/gkn879

    [24]

    Wang Q, Garrity G M, Tiedje J M. et al. et al. Naïve bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy[J]. Applied and environmental microbiology,2007,73(16):5261−5267. doi: 10.1128/AEM.00062-07

    [25]

    Kumar S, Nei M, Dudley J, et al. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Briefings in Bioinformatics,2008,9(4):299−306. doi: 10.1093/bib/bbn017

    [26]

    Chen P, Liu L, Zhang X, et al. Antioxidant activity of cheddar cheese during its ripening time and after simulated gastrointestinal digestion as affected by probiotic bacteria[J]. International Journal of Food Properties,2019,22(1):217−228. doi: 10.1080/10942912.2019.1579836

    [27] 郝欣悦, 李晓东, 刘璐, 等. 瑞士乳杆菌对契达干酪成熟期间所产ACE抑制肽的影响及其消化稳定性[J/OL]. 食品科学: 1−12[2021-08-13]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201228.1533.006.html.

    Hao X Y, Li X D, Liu L, et al. Effect of Lactobacillus helveticus on ACE inhibitory peptide of Cheddar cheese during ripening and the digestion stability[J]. Food Science: 1−12[2021-08-13]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201228.1533.006.html.

    [28] 孙敏, 袁凤霞, 曹晓虹, 等. 传统发酵食品中耐肠胃道环境乳酸菌的筛选及其在酸乳发酵中的应用[J]. 食品与发酵工业,2018,44(3):114−120. [Sun M, Yuan F X, Cao X H, et al. Screening of lactic acid bacteria strains with resistance to gastrointestinal environment isolated from traditional foods and their application in fermented yoghurt[J]. Food and Fermentation Industries,2018,44(3):114−120.
    [29] 陈瑞娟. 肠内菌丛与健康长寿[J]. 食品与发酵工业,1996,32(2):69−73. [Chen R J. Intestinal flora and healthy longevity[J]. Food and Fermentation Industries,1996,32(2):69−73. doi: 10.3321/j.issn:0253-990X.1996.02.017
    [30]

    Shah N P. Probiotic bacteria: Selective enumeration and survival in dairy foods[J]. Journal of Dairy Science,2000,83(4):894−907. doi: 10.3168/jds.S0022-0302(00)74953-8

    [31] 刘璐, 吴江丽, 杨金桃, 等. 发酵鱼酱酸产GABA乳酸菌的分离筛选及发酵特性研究 [J/OL]. 食品科学: 1−16[2021-07-08]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201212.0814.014.html.

    Liu L. Wu J L, Yang J T, et al. Isolation and fermentation characteristics of gaba-producing lactic acid bacteria from fermented yu jiang suan[J]. Food Science: 1−12[2021-08-13]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201228.1533.006.html.

    [32] 熊涛, 宋苏华, 黄锦卿, 等. 植物乳杆菌NCU116在模拟人体消化环境中的耐受力[J]. 食品科学,2011,32(11):114−117. [Xiong T, Song S H, Huang J Q, et al. Tolerance of Lactobacillus plantarum NCU116 in stimulated digestive environments[J]. Food Science,2011,32(11):114−117.
    [33] 辛羚, 郭本恒, 吴正钧. 3株乳杆菌在模拟消化环境中存活性能的研究[J]. 中国乳品工业,2005,33(5):15−17. [Xin L, Guo B H, Wu Z J. Studies on the survival properties of three lactobacillus strains in imitative gastroenteric environments[J]. China Dairy Industry,2005,33(5):15−17. doi: 10.3969/j.issn.1001-2230.2005.05.004
图(3)  /  表(3)
计量
  • 文章访问数:  255
  • HTML全文浏览量:  74
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-04
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2021-09-14

目录

/

返回文章
返回