• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

超声提取-气相色谱-串联质谱法测定煎烤鱿鱼中16种多环芳烃

朱严华, 杨波, 黄菊, 张帅, 余新威, 祝世超, 唐云平

朱严华,杨波,黄菊,等. 超声提取-气相色谱-串联质谱法测定煎烤鱿鱼中16种多环芳烃[J]. 食品工业科技,2021,42(16):263−270. doi: 10.13386/j.issn1002-0306.2020110268.
引用本文: 朱严华,杨波,黄菊,等. 超声提取-气相色谱-串联质谱法测定煎烤鱿鱼中16种多环芳烃[J]. 食品工业科技,2021,42(16):263−270. doi: 10.13386/j.issn1002-0306.2020110268.
ZHU Yanhua, YANG Bo, HUANG Ju, et al. Determination of 16 Polycyclic Aromatic Hydrocarbons(PAHs) in Fried Squid by Ultrasonic Extraction-Gas Chromatography-Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(16): 263−270. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110268.
Citation: ZHU Yanhua, YANG Bo, HUANG Ju, et al. Determination of 16 Polycyclic Aromatic Hydrocarbons(PAHs) in Fried Squid by Ultrasonic Extraction-Gas Chromatography-Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(16): 263−270. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110268.

超声提取-气相色谱-串联质谱法测定煎烤鱿鱼中16种多环芳烃

基金项目: 国家级大学生创新创业训练计划(14131062713);GK新苗人才计划(24127000107)
详细信息
    作者简介:

    朱严华(1995−),男,硕士,研究方向:食品加工与贮藏,E-mail:yanhua17858803699@163.com

    通讯作者:

    黄菊(1983−),女,博士,副教授,研究方向:食品加工与安全,E-mail:0305huahua@163.com

  • 中图分类号: TS254.7

Determination of 16 Polycyclic Aromatic Hydrocarbons(PAHs) in Fried Squid by Ultrasonic Extraction-Gas Chromatography-Mass Spectrometry

  • 摘要: 本实验建立了超声提取-气相色谱-串联质谱法(polycyclic aromatic hydrocarbons, PAHs)测定煎烤鱿鱼中16种多环芳烃的分析方法。考察了提取试剂配比、提取试剂用量、提取温度等对回收率的影响,确定了最佳的提取和检测方法:5.00 g样品冷冻干燥后经25 mL正己烷30 ℃超声提取20 min,复提一次,经碱性氧化铝-中性硅胶复合固相萃取柱净化后,采用气相色谱-串联质谱法测定,多环芳烃氘代内标法定量。在此实验条件下,16种目标物在1~100 ng/mL范围内呈良好线性关系,线性相关系数(r)不低于0.9994,检出限为0.09~0.52 μg/kg,定量限为0.21~1.21 μg/kg。在1、2、20 μg/kg 3个加标水平下回收率分别为73.98%~128.17%、73.21%~133.24%、76.35%~133.68%,相对标准偏差(RSD,n=6)分别为1.32%~2.98%、0.93%~2.47%、1.08%~2.87%。在实际样品检测应用中,6个样品均有不同程度的多环芳烃检出,单一组分检出范围从0~48.65 μg/kg不等。结果表明,该方法选择性好,可用于煎烤鱿鱼中多环芳烃的检测,也可应用于其他类似的加工水产品中多环芳烃的提取与检测。
    Abstract: In this experiment, an analytical method for the determination of 16 PAHs in fried squid by ultrasonic extraction-gas chromatography-mass spectrometry (PAHs) was established. The effects of extraction reagent ratio, extraction reagent dosage and extraction temperature on the recovery rate were investigated. The best extraction and detection method was determined as follows: after freeze-drying, 5.00 g sample was extracted by 25 mL n-hexane at 30 ℃ for 20 min, and then reextracted once. After purification by alkaline alumina neutral silica gel composite solid phase extraction column, compounds was determined by gas chromatography tandem mass spectrometry and quantified by deuterium internal standard method. Under these experimental conditions, 16 target compounds showed good linear relationship in the range of 1~100 ng/mL, the linear correlation coefficient (r) was not less than 0.9994, the detection limit was 0.09~0.52 μg/kg, and the quantitation limit was 0.21~1.21 μg/kg. The recoveries were 73.98%~128.17%, 73.21%~133.24% and 76.35%~133.68% at the spiked levels of 1, 2 and 20 μg/kg, respectively. The relative standard deviations (RSD, n=6) were 1.32%~2.98%, 0.93%~2.47% and 1.08%~2.87%, respectively. In the actual sample detection application, PAHs were detected in all the six samples. The detection range of single component ranged from 0 to 48.65 μg/kg. The results showed that the method had good selectivity. It could be used for the detection of polycyclic aromatic hydrocarbons in fried squid and other similar processed aquatic products.
  • 多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)又称多环性芳香化合物或多环芳香族碳氢化合物[1],这类有机物种类较多,分布较广,与人类密切相关,具有致癌、致畸、致突变等毒副作用,极大地威胁着人类的健康。在饮用水、蔬菜、水果、谷类、油类、奶制品和烟熏肉等食品[2-5]中均检测出多环芳烃(PAHs),其中在果蔬中含量较少[6]。烤鸭、烤肠等经过烤、炸、煎等加工处理的食品中多环芳烃含量普遍高于国内、国际最高限量标准[7-8]

    目前,针对土壤、空气、水,以及蔬菜瓜果等中多环芳烃的检测已经建立了简便高效的方法[9-12],研究表明肌肉类食物(如水产品和肉类)中富含肌酸、肌酸酐、氨基酸等物质,在高温条件易分解或者与糖发生美拉德反应,从而导致大量多环芳烃等有害物质的形成[13],肉及肉制品基质高度复杂,通常需要大量的净化提取程序以破坏其脂质组分并促进目标分析物的提取,因此它们的前处理比其他食品样品的预处理更加困难[14-16]。因此,在不同基质基础上建立的检测方法对加工食物中多环芳烃的检测具有一定的局限性。通常多环芳烃的分析检测主要分为预处理与测定两部分,预处理包括提取、纯化、富集。常用的提取方法多种多样,主要有索氏萃取、加速溶剂萃取、微波辅助萃取、超临界流体萃取、固相微萃取、超声萃取[17-19]等。多种提取方法各有优缺点,其中超声提取是指利用超声波辐射压强产生的强烈空化应效应、机械振动、扰动效应、高的加速度、乳化、扩散、击碎和搅拌作用等多级效应,增大物质分子运动频率和速度,增加溶剂穿透力,从而加速目标成分进入溶剂,促进提取进行的萃取方法,其具有操作简单、溶剂使用量少、提取效果稳定和耗时短的特点,是从土壤等基质中提取多环芳烃的一个重要提取方法[20]。多环芳烃的测定技术较为成熟,主要有高效液相色谱(HPLC-DAD)、液质联用(HPLC-MS)、气相色谱(GC-FID)以及气质联用(GC-MS)等方法。与液相色谱相比,气质联用法可以提供足够的化合物定性分析,结果准确可靠,检测灵敏度高。本实验以煎烤鱿鱼为研究对象,拟通过前处理条件优化,采用超声萃取联合气象色谱-质谱法(GC/MS)探索煎烤类食品中多环芳烃的检测方法,同时也为进一步研究煎烤类食品中多环芳烃形成规律及控制方法打下良好的检测基础。

    新鲜秘鲁鱿鱼(250±10 g) 采购于舟山新城华润万家超市;煎烤鱿鱼(成品)样品1、2、3  采购于舟山新城华润万家超市;煎烤鱿鱼(成品)样品4、5、6 采购于舟山华之友超市;正己烷、二氯甲烷 色谱纯,上海安谱实验科技股份有限公司;硅胶(70~230目)、碱性氧化铝(0.05~0.15 mm) 美国Fluka公司;PAHs混合标准液 上海安谱实验科技股份有限公司;16种氘代多环芳烃同位素标准溶液 德国Dr.Ehrensorfer公司;无水硫酸钠 国药集团。

    尚康磨粉机(FL1936) 温州福菱科技有限公司;超声波清洗器(KQ5200DA) 昆山市超声仪器有限公司;冷冻干燥机(FD-1D-50) 北京博医康实验仪器有限公司;高速冷冻离心机(Avanti JXN-30) 美国贝克曼库尔特有限公司;氮吹仪(NEVAP-24) 济南正荣医疗器械有限公司;气质联用仪(7890B/7000D) 美国安捷伦科技有限公司。

    将冷冻鱿鱼流水解冻后,三去处理(去头去鳍去内脏),清水洗干净,取厚度为2 mm部位切成大小为5 cm×5 cm鱿鱼片。160±2 ℃条件下,将鱿鱼置于平底锅煎制(棕榈油),翻面防止变糊,直至鱿鱼熟透(3 min)。煎烤完成后用吸油纸吸除多余的油脂,匀质化处理后−80 ℃冷冻保存,样品待分析。

    称取5.00 g(精确至0.01 g)样品,加入25 mL正己烷、100 µL 100 µg/mL多环芳烃氘代内标和100 µL 100 µg/mL多环芳烃外标,涡旋混匀后30 ℃超声20 min,4 ℃条件下8000 r/min离心10 min,吸取上层清液,下层加入20 mL正己烷复提一次,合并两次上清液待净化。采用碱性氧化铝/硅胶色谱法做净化分离[21]。转换溶剂后用正己烷定容至1.0 mL后过0.45 μm滤膜待检测。

    为考察样品中水分对多环芳烃提取的影响,实验组采用冷冻干燥处理煎烤鱿鱼,对照组不做处理,按照1.2.2方法进行提取净化,1.2.4进行测定,以多环芳烃加标回收率为指标,确定最佳提取条件。

    通常用于提取生物样品中 PAHs的溶剂有乙腈、正己烷、二氯甲烷、丙酮、苯及其混合溶液[22-25]。为了达到提取效率最大化、绿色环保的目的,考察了常用试剂正己烷、二氯甲烷与4种不同体积比的正己烷-二氯甲烷混合溶剂(4:1、3:1、2:1、1:1)的提取效果,按照1.2.2方法进行提取净化,1.2.4进行测定,以多环芳烃加标回收率为指标,确定最佳提取条件。

    以最佳提取溶剂为提取试剂,考察了不同提取体积(15、20、25、30 mL)对回收率的影响,按照1.2.2方法进行提取净化,1.2.4进行测定,以多环芳烃加标回收率为指标,确定最佳提取条件。

    以最佳提取溶剂为提取试剂,以最佳提取溶剂用量进行实验,考察了不同温度(20、30、40、50 ℃)对回收率的影响,按照1.2.2方法进行提取净化,1.2.4进行测定,以多环芳烃加标回收率为指标,确定最佳提取条件。

    色谱柱:VF-5ms色谱柱(30 mm×0.25 mm×0.25 µm);升温程序:60 ℃保持1 min,以10 ℃/min升至210 ℃,再以1.5 ℃/min升至260 ℃,然后以3 ℃/min升至290 ℃;载气(He)流速1.0 mL/min,进样量0.2 µL。分流方式:不分流。

    EI源:230 ℃;电子能量70 eV;传输线温度:280 ℃;离子阱温度:200 ℃;电子倍增管电压:1650 kV;质量扫描范围m/z:40~290。16种多环芳烃及其氘代内标的SIM离子见表1,以信噪比(S/N)为3计算检出限(LOD),以信噪比(S/N)为7计算定量限(LOQ)。

    表  1  16种多环芳烃及其氘代物SIM离子及理化性质
    Table  1.  SIM ion and physicochemical properties of 16 polycyclic aromatic hydrocarbons and their deuterium substitutes
    化合物名称英文名称Q1(母离子)
    (m/z)
    Q3(子离子)
    (m/z)
    沸点
    (℃)
    Naphthalene126.9127.9209.8
    萘-d8Naphthalene-d8134136.1
    苊烯Acenaphthylene149.9151.9290
    苊烯-d8Acenaphthylene-d8157.8160
    Acenaphthene152.9153.9252
    苊-d10Acenaphthene-d10162.1164.1
    Fluorene165.9166.9276
    芴-d10Fluorene-d10173.9176
    Phenanthrene183.9188326
    菲-d10Phenanthrene-d10175.9177.9
    Anthracene183.9188326
    蒽-d10Anthracene-d10175.9177.9
    荧蒽Fluoranthene152201.9369
    荧蒽Fluoranthene-d10180212.9
    Pyrene150201.9369
    芘-d10Pyrene-d10180212.9
    苯并[a]蒽Benz[a]anthracene225.9227.9400
    苯并[a]蒽-d12Benz[a]anthracene-d12236.2240.2
    Chrysene225.9227.9400
    屈-d12Chrysene-d12236.2240.2
    苯并[b]荧蒽Benzo[b]fluoranthene126252461
    苯并[b]荧蒽-d12Benzo[b]fluoranthene-d12260264
    苯并[k]荧蒽Benzo[k]fluoranthene249.9251.9430
    苯并[k]荧蒽-d12Benzo[k]fluoranthene-d12260264
    苯并[a]芘Benzo[a]pyrene249.9127.9461
    苯并[a]芘-d12Benzo[a]pyrene-d12260136.1
    茚并[1,2,3-cd]芘Indeno(1,2,3-c,d)pyrene274151.9498
    茚并[1,2,3-cd]芘-d12Indeno(1,2,3-c,d)pyrene-d12284160
    二苯并[a,h] 蒽Dibenz[a,h]anthracene124.1153.9487
    二苯并[a,h] 蒽-d14Dibenz[a,h]anthracene-d14288164.1
    苯并[g,h,i]苝Benzo[g,h,i]perylene274166.9467
    苯并[g,h,i]苝-d12Benzo[g,h,i]perylene-d12284176
    下载: 导出CSV 
    | 显示表格

    所有试验数据均采用Origin 8.0、SPSS19.0软件作图及分析。

    鱿鱼经煎烤处理后仍然含有70%~75%水分,且经过煎烤处理后含有部分油脂,在提取过程中会出现乳化现象。而多环芳烃是脂溶性物质,乳化层可能存在目标物,为减少乳化现象的发生,提高提取效率,采用冷冻干燥处理后加入100 µL 100 µg/mL多环芳烃外标进行实验。数据显示(见图1),实验组采用冷冻干燥处理后,萘、芴、菲、苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽、茚并[1,2,3-cd]芘、二苯并[a,h]蒽的回收率均得到了提升,且其他组分回收率均得到较好保持,实验组回收率为66.95%~141.43%,对照组回收率为61.31%~137.38%。通过实验发现,冷冻干燥对低环、低分子量多环芳烃影响较大,可能是低环多环芳烃的物理性质所决定,随着多环芳烃环数的增加,分子量的增加,多环芳烃的溶解度(25 ℃)逐渐下降,水分的去除对于提取低环多环芳烃具有一定的促进作用,但由于低环多环芳烃的沸点更低,更易挥发,冷冻干燥的同时也加剧了低环多环芳烃的挥发,又降低了低环多环芳烃的提取效率;高环芳烃由于其强疏水性,高沸点,冷冻干燥对其的影响并不大[26]。冷冻干燥处理后,能够完全控制乳化现象的发生,降低乳化对实验的影响,提高了低环多环芳烃萘的提取效率,且其他种类的多环芳烃回收率亦在可接受范围之中,故实验采用除水优化后进行实验。

    图  1  除水优化后16种多环芳烃回收率
    Figure  1.  Recovery rates of 16 PAHs after water removal optimization

    正己烷-二氯甲烷混合溶液的极性随着二氯甲烷比例的升高而增加,而PAHs中稠环组分具有一定极性,根据相似相溶原理,增大溶剂中的二氯甲烷比例,可更容易提取极性较大的稠环组分。由表2可知,提取试剂为正己烷时,总体回收率为75.88%~132.27%;提取试剂为正己烷:二氯甲烷=4:1时,总体回收率为66.41%~120.19%;提取试剂为正己烷:二氯甲烷=3:1时,总体回收率为60.28%~123.68%;提取试剂为正己烷:二氯甲烷=2:1时,总体回收率为56.18%~114.91%;提取试剂为正己烷:二氯甲烷=1:1时,总体回收率为72.69%~146.22%;提取试剂为二氯甲烷时,总体回收率为56.43%~132.13%。从各组分回收率来看,使用正己烷提取,平均回收率较好,达到109.62%,可能是受基质的影响,煎烤鱿鱼中含有少量油脂,外标加入混合后首先溶于脂质中,而正己烷与脂质互溶,能够更好的进行提取。虽然苯并[b]荧蒽、苯并[k]荧蒽等高环芳烃在混合提取试剂中随着极性的增强,回收率有所增加,但总体回收率与正己烷为提取剂相比,并不高,可能是因为混合溶剂提取时,最终需要进行溶剂转换,在转换的过程中导致多环芳烃少量挥发,从而降低了回收率。考虑到实验简便性及各组分回收率,采用正己烷提取操作简便,且正己烷对16种PAHs的回收率均较理想(75.88%~132.27%),因此本实验最终选择正己烷为最佳提取溶剂。

    表  2  不同试剂提取下各组分回收率
    Table  2.  Recovery rates of each component extracted by different reagents
    名称
    回收率(%)
    ABCDEF
    75.88±1.6370.30±2.3660.38±1.6158.28±4.8583.45±1.6162.22±1.13
    苊烯88.56±4.2970.87±4.6360.39±1.8257.66±2.3787.20±2.4756.43±4.68
    91.23±1.0566.41±2.8062.98±3.4756.18±3.2787.03±4.8557.62±2.71
    93.68±1.1976.10±3.2069.19±4.5164.84±3.6394.11±2.5064.98±4.43
    97.40±1.7782.32±1.3574.87±4.4170.37±1.32100.40±3.5171.43±4.22
    102.72±0.7686.84±3.7284.48±2.2374.70±3.24107.80±2.7674.29±4.65
    荧蒽106.72±3.2490.06±2.4087.98±2.4675.49±3.86111.88±4.0779.95±3.06
    111.26±2.6490.97±3.9387.87±2.3775.88±4.81112.58±4.7280.94±4.88
    苯并[a]蒽130.24±4.3369.03±2.7667.54±2.6170.38±4.3972.69±3.24106.45±1.76
    116.27±2.4972.55±4.2960.28±3.3363.98±0.7974.14±3.9591.96±1.81
    苯并[b]荧蒽128.87±3.90101.96±4.79123.68±0.2379.34±1.57106.37±1.55113.84±3.39
    苯并[k]荧蒽118.66±1.33107.87±4.74109.65±4.74114.91±3.29146.22±2.6299.68±1.81
    苯并[a]芘132.27±2.65107.01±2.21102.46±1.0593.70±2.09125.01±1.83108.53±3.14
    茚并[1,2,3-cd]芘125.46±2.24102.23±1.7175.02±2.5979.54±4.14111.41±4.23126.86±3.92
    二苯并[a,h] 蒽127.53±2.84120.19±4.3378.49±2.8793.05±1.81128.49±4.97132.13±1.07
    苯并[g,h,i]苝107.12±4.6468.69±4.8170.42±4.9971.97±3.7680.90±1.62103.10±4.98
    注:A代表提取试剂为正己烷;B代表提取试剂为正己烷:二氯甲烷=4:1;C代表提取试剂为正己烷:二氯甲烷=3:1;D代表提取试剂为正己烷:二氯甲烷=2:1;E代表提取试剂为正己烷:二氯甲烷=1:1;F代表提取试剂为二氯甲烷。
    下载: 导出CSV 
    | 显示表格

    以正己烷溶液为提取试剂,不同剂量下回收率如表3,提取溶剂用量为15 mL时,16种PAHs回收率为61.31%~137.38%;提取溶剂用量为20 mL时,16种PAHs的回收率为75.88%~132.27%;提取溶剂用量为25 mL时,16种PAHs的回收率为82.69%~134.33%;提取溶剂用量为30 mL时,16种PAHs回收率为74.49%~133.31%。15、20、25、30 mL正己烷对16种PAHs的回收率范围较为接近,但使用25 mL正己烷提取时,对低环多环芳烃如萘等提取效果更佳,因此,实验选择提取溶剂的最佳用量为25 mL。

    表  3  不同剂量提取下各组分回收率
    Table  3.  Recovery rates of each component were obtained at different doses
    名称
    回收率(%)
    15 mL20 mL25 mL30 mL
    61.31±2.3075.88±1.2582.69±1.6674.49±1.77
    苊烯93.34±1.4888.56±2.35101.04±1.01106.95±4.80
    94.26±2.3891.23±1.35108.28±4.05114.22±2.19
    96.42±1.4093.68±2.50100.30±2.3691.92±1.87
    100.57±4.4997.40±4.51102.78±4.1296.27±2.57
    100.13±2.66102.72±3.25108.62±1.16104.04±4.70
    荧蒽99.30±2.37106.72±4.13115.43±1.98106.58±2.21
    114.52±2.53111.26±1.14116.16±3.91110.15±4.80
    苯并[a]蒽132.18±2.81130.24±2.02134.33±3.24133.31±4.01
    117.87±3.64116.27±1.29129.25±4.43118.60±2.29
    苯并[b]荧蒽133.77±3.99128.87±4.60132.96±1.18132.77±3.07
    苯并[k]荧蒽122.66±3.10118.66±1.23129.05±3.72119.76±2.75
    苯并[a]芘137.38±4.05132.27±3.30133.93±1.66131.64±4.07
    茚并[1,2,3-cd]芘135.18±3.10125.46±1.26130.52±4.68129.10±4.39
    二苯并[a,h] 蒽134.62±2.03127.53±3.96134.11±3.68130.86±2.97
    苯并[g,h,i]苝111.59±1.39107.12±3.70114.49±3.61111.07±4.50
    下载: 导出CSV 
    | 显示表格

    不同提取温度下回收率如表4,提取温度为20 ℃时,16种PAHs回收率为82.69%~134.33%;提取温度为30 ℃时,16种PAHs回收率为96.26%~132.39%;提取温度为40 ℃时,16种PAHs回收率为104.07%~136.48%;提取温度为50 ℃时,16种PAHs回收率为95.79%~135.46%。实验结果发现,提取温度的变化对实验回收率的影响并不大。因此,实验选择提取最佳温度为最接近室温的30 ℃。值得注意的是,实验结果都呈现出低环PAHs的回收率低于高环PAHs。研究表明,低环PAHs(如萘、苊、苊烯、芴等)在浓缩过程中更易转移到空气中,因此有不同程度的损失[27]

    表  4  不同温度提取下各组分回收率
    Table  4.  Recovery rates of each component were obtained at different temperatures
    名称
    回收率(%)
    20 ℃30 ℃40 ℃50 ℃
    82.69±2.0797.26±4.49104.07±3.9295.87±4.66
    苊烯101.04±2.3296.26±1.72109.23±4.93114.65±3.99
    108.28±4.65105.25±4.12122.30±4.49128.23±4.29
    100.30±1.7497.56±2.24104.74±4.9795.79±2.30
    102.78±4.7999.61±1.47104.53±3.9598.48±3.17
    108.62±3.96105.21±4.88111.04±4.98106.53±3.88
    荧蒽115.43±3.58112.79±3.50121.70±3.38112.65±1.02
    116.16±4.94112.83±4.16117.52±2.78111.70±3.32
    苯并[a]蒽134.33±3.26132.39±1.33136.48±2.47135.46±1.11
    129.25±3.47127.65±4.57129.63±3.34129.99±1.51
    苯并[b]荧蒽132.96±1.46128.06±2.82132.15±2.48131.96±4.25
    苯并[k]荧蒽129.05±3.34125.05±2.27135.44±1.75126.15±2.76
    苯并[a]芘133.93±1.35128.82±3.83130.48±3.14128.19±3.91
    茚并[1,2,3-cd]芘130.52±1.57120.80±4.63135.85±3.08124.44±4.42
    二苯并[a,h] 蒽134.11±1.99128.40±4.78134.98±2.53131.73±2.80
    苯并[g,h,i]苝114.49±2.25110.02±3.35117.39±1.17113.97±1.34
    下载: 导出CSV 
    | 显示表格

    用正己烷配制成16种PAHs质量浓度分别为0.001、0.002、0.010、0.020、0.100 μg/L和含内标物质量浓度为0.010 μg/L的混合标准工作溶液,在上述优化色谱条件下进行分析。以目标物与其对应的内标物的定量离子峰面积比值为纵坐标,对应的质量浓度比为横坐标进行线性回归分析。以信噪比(S/N)为3计算检出限(LOD),以信噪比(S/N)为7计算定量限(LOQ)。结果表明,16种PAHs在0.001~0.100 μg/L质量浓度范围内与其响应值呈良好的线性关系,线性相关系数(r)不低于0.9994,16种PAHs的检出限范围为0.09~0.52 μg/kg,定量限范围为0.21~1.21 μg/kg。方法的线性方程、相关系数、检出限见表5

    表  5  16种多环芳烃的线性方程及方法检出限、定量限
    Table  5.  Standard curves, LODS and LOQs for 16 PAHs
    化合物名称标准曲线方程相关系数r检出限(μg/kg)定量限(μg/kg)
    Y=0.874410X−0.0647000.99970.320.75
    苊烯Y=0.702170X−0.0744090.99940.250.58
    Y=0.894140X−0.1798510.99980.150.35
    Y=0.671608X−0.0253850.99980.100.23
    Y=0.569669X−0.0024270.99990.210.49
    Y=0.726902X−0.0282710.99980.230.54
    荧蒽Y=0.539355X−0.0011680.99990.270.63
    Y=0.675139X−0.0568890.99950.310.72
    苯并[a]蒽Y=0.364375X−0.0061350.99990.300.70
    Y=0.438787X−0.0164580.99980.280.65
    苯并[b]荧蒽Y=0.600169X−0.0171920.99980.270.63
    苯并[k]荧蒽Y=0.648967X−0.0173850.99980.280.65
    苯并[a]芘Y=0.562440X−0.0131080.99990.090.21
    茚并[1,2,3-cd]芘Y=0.436954X−0.0148370.99980.120.28
    二苯并[a,h]蒽Y=0.112842X−0.0018740.99990.350.82
    苯并[g,h,i]苝Y=0.522098X−0.0046780.99990.521.21
    下载: 导出CSV 
    | 显示表格

    添加回收率和相对标准偏差结果见表6。由表6可知, 煎烤鱿鱼样品在1、2、20 μg/kg 3个加标水平下的回收率分别为73.98%~128.17%、73.21%~133.24%、76.35%~133.68%,相对标准偏差(RSD,n=6)分别为1.32%~2.98%、0.93%~2.47%、1.08%~2.87%,符合污染物残留分析方法的准确的和精密度要求。

    表  6  16种多环芳烃的平均加标回收率及相对标准偏差(n=6)
    Table  6.  Average standard recovery and relative standard deviation of 16 PAHs(n =6)
    多环芳烃

    基体加标平均回收率和精密度
    1 μg/kg2 μg/kg20 μg/kg
    回收率(%)精密度(%)回收率(%)精密度(%)回收率(%)精密度(%)
    73.981.8473.211.2476.351.53
    苊烯81.362.3583.542.0580.371.68
    82.892.5880.491.2483.481.65
    93.292.0890.682.0394.492.02
    97.432.9299.782.0896.281.58
    94.181.8396.492.0792.661.24
    荧蒽102.331.42104.560.93100.491.45
    102.711.76102.472.34103.341.08
    苯并[a]蒽124.492.78125.462.04122.112.31
    114.452.71112.342.29116.561.39
    苯并[b]荧蒽124.491.32126.492.25122.281.68
    苯并[k]荧蒽102.102.12102.382.02100.021.58
    苯并[a]芘96.232.8494.682.2199.381.38
    茚并[1,2,3-cd]芘128.172.98133.241.38130.292.87
    二苯并[a,h]蒽122.692.09129.892.47133.682.09
    苯并[g,h,i]苝88.961.9787.891.3592.231.88
    下载: 导出CSV 
    | 显示表格

    将鱿鱼样品在160±2 ℃条件下煎烤3 min,然后检测样品多环芳烃总量以及16种常见多环芳烃化合物的含量。结果如图2所示:经过3 min的加工处理,萘、苊烯、苊、芴、菲、荧蒽、苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘含量均有所上升,蒽、芘、茚并[1,2,3-cd]蒽、二苯并[a,h]蒽含量有所下降,实验组多环芳烃总含量较对照组(生鲜鱿鱼)有显著增加,达到了33.44 µg/kg,而对照组(生鱿鱼)中含量为19.46 µg/kg,增长率为71.84%。鱿鱼在加工过程由外至内温度逐渐升高,内部温度越高,蛋白质、脂肪等物质裂解、环化、聚合成多环芳烃的程度也加深,进而导致多环芳烃总量的增加[28]

    图  2  煎烤前后16种多环芳烃含量变化
    Figure  2.  Content of 16 kinds of PAHs varied before and after frying and baking

    采用该方法对来自舟山超市等共6地所采的煎烤鱿鱼共计6份样品进行检测,结果见表7。结果表明,煎烤鱿鱼中多环芳烃均有不同程度地检出,多环芳烃总量20.29~73.96 μg/kg不等。致癌性化合物如苊烯、芴、蒽、苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽、苯并[g,h,i]苝未检出,但苯并[a]芘均有检出,其中样品1、样品2中苯并[a]芘含量超过了中国国家食品安全标准GB 2762-2017对肉类产品中苯并芘的限量 5.0 μg/kg[29],应引起重视。各样品中多环芳烃含量多变,可能与其煎烤时间,煎烤使用香料种类等有关。

    表  7  实验样品中多环芳烃的检测结果(μg/kg)
    Table  7.  Determination of PAHs in actual samples (μg/kg)
    样品1样品2样品3样品4样品5样品6
    20.8548.659.246.1212.9434.74
    苊烯NDNDNDNDNDND
    1.782.901.161.451.311.51
    NDNDNDNDNDND
    1.361.271.131.181.251.44
    NDNDNDNDND1.84
    荧蒽0.810.840.450.790.420.55
    4.334.712.084.945.205.47
    苯并[a]蒽NDNDNDNDNDND
    NDNDNDNDNDND
    苯并[b]荧蒽NDNDNDNDNDND
    苯并[k]荧蒽NDNDNDNDNDND
    苯并[a]芘8.538.890.711.601.060.69
    茚并[1,2,3-cd]芘5.866.285.206.915.155.93
    二苯并[a,h]蒽0.360.410.320.480.440.58
    苯并[g,h,i]苝NDNDNDNDNDND
    总量43.8773.9620.2923.4827.7652.76
    注:ND表示未检出。
    下载: 导出CSV 
    | 显示表格

    本研究应用气相色谱-串联质谱法建立了煎烤鱿鱼中16种PAHs的检测方法。样品经冷冻干燥后,25 mL正己烷、30 ℃超声提取两次,浓缩后经碱性氧化铝和硅胶复合固相萃取柱净化,气相色谱-串联质谱法检测,多环芳烃氘代内标法定量,实现了煎烤食品中16种PAHs含量的定量及确证分析。该方法16种PAHs的检出限范围为0.09~0.52 μg/kg,定量限范围为0.21~1.21 μg/kg。在1、2、20 μg/kg 3个加标水平下的回收率分别为73.98%~128.17%、73.21%~133.24%、76.35%~133.68%,相对标准偏差(RSD,n=6)分别为1.32%~2.98%、0.93%~2.47%、1.08%~2.87%。符合污染物残留分析方法的准确的和精密度要求。在实际样品检测应用中,亦有较好表现。与传统方法相比,该方法具有操作简单、检测快速等特点,各项技术指标均能满足检测分析的要求,为食品安全领域提供重要的技术支持。

  • 图  1   除水优化后16种多环芳烃回收率

    Figure  1.   Recovery rates of 16 PAHs after water removal optimization

    图  2   煎烤前后16种多环芳烃含量变化

    Figure  2.   Content of 16 kinds of PAHs varied before and after frying and baking

    表  1   16种多环芳烃及其氘代物SIM离子及理化性质

    Table  1   SIM ion and physicochemical properties of 16 polycyclic aromatic hydrocarbons and their deuterium substitutes

    化合物名称英文名称Q1(母离子)
    (m/z)
    Q3(子离子)
    (m/z)
    沸点
    (℃)
    Naphthalene126.9127.9209.8
    萘-d8Naphthalene-d8134136.1
    苊烯Acenaphthylene149.9151.9290
    苊烯-d8Acenaphthylene-d8157.8160
    Acenaphthene152.9153.9252
    苊-d10Acenaphthene-d10162.1164.1
    Fluorene165.9166.9276
    芴-d10Fluorene-d10173.9176
    Phenanthrene183.9188326
    菲-d10Phenanthrene-d10175.9177.9
    Anthracene183.9188326
    蒽-d10Anthracene-d10175.9177.9
    荧蒽Fluoranthene152201.9369
    荧蒽Fluoranthene-d10180212.9
    Pyrene150201.9369
    芘-d10Pyrene-d10180212.9
    苯并[a]蒽Benz[a]anthracene225.9227.9400
    苯并[a]蒽-d12Benz[a]anthracene-d12236.2240.2
    Chrysene225.9227.9400
    屈-d12Chrysene-d12236.2240.2
    苯并[b]荧蒽Benzo[b]fluoranthene126252461
    苯并[b]荧蒽-d12Benzo[b]fluoranthene-d12260264
    苯并[k]荧蒽Benzo[k]fluoranthene249.9251.9430
    苯并[k]荧蒽-d12Benzo[k]fluoranthene-d12260264
    苯并[a]芘Benzo[a]pyrene249.9127.9461
    苯并[a]芘-d12Benzo[a]pyrene-d12260136.1
    茚并[1,2,3-cd]芘Indeno(1,2,3-c,d)pyrene274151.9498
    茚并[1,2,3-cd]芘-d12Indeno(1,2,3-c,d)pyrene-d12284160
    二苯并[a,h] 蒽Dibenz[a,h]anthracene124.1153.9487
    二苯并[a,h] 蒽-d14Dibenz[a,h]anthracene-d14288164.1
    苯并[g,h,i]苝Benzo[g,h,i]perylene274166.9467
    苯并[g,h,i]苝-d12Benzo[g,h,i]perylene-d12284176
    下载: 导出CSV

    表  2   不同试剂提取下各组分回收率

    Table  2   Recovery rates of each component extracted by different reagents

    名称
    回收率(%)
    ABCDEF
    75.88±1.6370.30±2.3660.38±1.6158.28±4.8583.45±1.6162.22±1.13
    苊烯88.56±4.2970.87±4.6360.39±1.8257.66±2.3787.20±2.4756.43±4.68
    91.23±1.0566.41±2.8062.98±3.4756.18±3.2787.03±4.8557.62±2.71
    93.68±1.1976.10±3.2069.19±4.5164.84±3.6394.11±2.5064.98±4.43
    97.40±1.7782.32±1.3574.87±4.4170.37±1.32100.40±3.5171.43±4.22
    102.72±0.7686.84±3.7284.48±2.2374.70±3.24107.80±2.7674.29±4.65
    荧蒽106.72±3.2490.06±2.4087.98±2.4675.49±3.86111.88±4.0779.95±3.06
    111.26±2.6490.97±3.9387.87±2.3775.88±4.81112.58±4.7280.94±4.88
    苯并[a]蒽130.24±4.3369.03±2.7667.54±2.6170.38±4.3972.69±3.24106.45±1.76
    116.27±2.4972.55±4.2960.28±3.3363.98±0.7974.14±3.9591.96±1.81
    苯并[b]荧蒽128.87±3.90101.96±4.79123.68±0.2379.34±1.57106.37±1.55113.84±3.39
    苯并[k]荧蒽118.66±1.33107.87±4.74109.65±4.74114.91±3.29146.22±2.6299.68±1.81
    苯并[a]芘132.27±2.65107.01±2.21102.46±1.0593.70±2.09125.01±1.83108.53±3.14
    茚并[1,2,3-cd]芘125.46±2.24102.23±1.7175.02±2.5979.54±4.14111.41±4.23126.86±3.92
    二苯并[a,h] 蒽127.53±2.84120.19±4.3378.49±2.8793.05±1.81128.49±4.97132.13±1.07
    苯并[g,h,i]苝107.12±4.6468.69±4.8170.42±4.9971.97±3.7680.90±1.62103.10±4.98
    注:A代表提取试剂为正己烷;B代表提取试剂为正己烷:二氯甲烷=4:1;C代表提取试剂为正己烷:二氯甲烷=3:1;D代表提取试剂为正己烷:二氯甲烷=2:1;E代表提取试剂为正己烷:二氯甲烷=1:1;F代表提取试剂为二氯甲烷。
    下载: 导出CSV

    表  3   不同剂量提取下各组分回收率

    Table  3   Recovery rates of each component were obtained at different doses

    名称
    回收率(%)
    15 mL20 mL25 mL30 mL
    61.31±2.3075.88±1.2582.69±1.6674.49±1.77
    苊烯93.34±1.4888.56±2.35101.04±1.01106.95±4.80
    94.26±2.3891.23±1.35108.28±4.05114.22±2.19
    96.42±1.4093.68±2.50100.30±2.3691.92±1.87
    100.57±4.4997.40±4.51102.78±4.1296.27±2.57
    100.13±2.66102.72±3.25108.62±1.16104.04±4.70
    荧蒽99.30±2.37106.72±4.13115.43±1.98106.58±2.21
    114.52±2.53111.26±1.14116.16±3.91110.15±4.80
    苯并[a]蒽132.18±2.81130.24±2.02134.33±3.24133.31±4.01
    117.87±3.64116.27±1.29129.25±4.43118.60±2.29
    苯并[b]荧蒽133.77±3.99128.87±4.60132.96±1.18132.77±3.07
    苯并[k]荧蒽122.66±3.10118.66±1.23129.05±3.72119.76±2.75
    苯并[a]芘137.38±4.05132.27±3.30133.93±1.66131.64±4.07
    茚并[1,2,3-cd]芘135.18±3.10125.46±1.26130.52±4.68129.10±4.39
    二苯并[a,h] 蒽134.62±2.03127.53±3.96134.11±3.68130.86±2.97
    苯并[g,h,i]苝111.59±1.39107.12±3.70114.49±3.61111.07±4.50
    下载: 导出CSV

    表  4   不同温度提取下各组分回收率

    Table  4   Recovery rates of each component were obtained at different temperatures

    名称
    回收率(%)
    20 ℃30 ℃40 ℃50 ℃
    82.69±2.0797.26±4.49104.07±3.9295.87±4.66
    苊烯101.04±2.3296.26±1.72109.23±4.93114.65±3.99
    108.28±4.65105.25±4.12122.30±4.49128.23±4.29
    100.30±1.7497.56±2.24104.74±4.9795.79±2.30
    102.78±4.7999.61±1.47104.53±3.9598.48±3.17
    108.62±3.96105.21±4.88111.04±4.98106.53±3.88
    荧蒽115.43±3.58112.79±3.50121.70±3.38112.65±1.02
    116.16±4.94112.83±4.16117.52±2.78111.70±3.32
    苯并[a]蒽134.33±3.26132.39±1.33136.48±2.47135.46±1.11
    129.25±3.47127.65±4.57129.63±3.34129.99±1.51
    苯并[b]荧蒽132.96±1.46128.06±2.82132.15±2.48131.96±4.25
    苯并[k]荧蒽129.05±3.34125.05±2.27135.44±1.75126.15±2.76
    苯并[a]芘133.93±1.35128.82±3.83130.48±3.14128.19±3.91
    茚并[1,2,3-cd]芘130.52±1.57120.80±4.63135.85±3.08124.44±4.42
    二苯并[a,h] 蒽134.11±1.99128.40±4.78134.98±2.53131.73±2.80
    苯并[g,h,i]苝114.49±2.25110.02±3.35117.39±1.17113.97±1.34
    下载: 导出CSV

    表  5   16种多环芳烃的线性方程及方法检出限、定量限

    Table  5   Standard curves, LODS and LOQs for 16 PAHs

    化合物名称标准曲线方程相关系数r检出限(μg/kg)定量限(μg/kg)
    Y=0.874410X−0.0647000.99970.320.75
    苊烯Y=0.702170X−0.0744090.99940.250.58
    Y=0.894140X−0.1798510.99980.150.35
    Y=0.671608X−0.0253850.99980.100.23
    Y=0.569669X−0.0024270.99990.210.49
    Y=0.726902X−0.0282710.99980.230.54
    荧蒽Y=0.539355X−0.0011680.99990.270.63
    Y=0.675139X−0.0568890.99950.310.72
    苯并[a]蒽Y=0.364375X−0.0061350.99990.300.70
    Y=0.438787X−0.0164580.99980.280.65
    苯并[b]荧蒽Y=0.600169X−0.0171920.99980.270.63
    苯并[k]荧蒽Y=0.648967X−0.0173850.99980.280.65
    苯并[a]芘Y=0.562440X−0.0131080.99990.090.21
    茚并[1,2,3-cd]芘Y=0.436954X−0.0148370.99980.120.28
    二苯并[a,h]蒽Y=0.112842X−0.0018740.99990.350.82
    苯并[g,h,i]苝Y=0.522098X−0.0046780.99990.521.21
    下载: 导出CSV

    表  6   16种多环芳烃的平均加标回收率及相对标准偏差(n=6)

    Table  6   Average standard recovery and relative standard deviation of 16 PAHs(n =6)

    多环芳烃

    基体加标平均回收率和精密度
    1 μg/kg2 μg/kg20 μg/kg
    回收率(%)精密度(%)回收率(%)精密度(%)回收率(%)精密度(%)
    73.981.8473.211.2476.351.53
    苊烯81.362.3583.542.0580.371.68
    82.892.5880.491.2483.481.65
    93.292.0890.682.0394.492.02
    97.432.9299.782.0896.281.58
    94.181.8396.492.0792.661.24
    荧蒽102.331.42104.560.93100.491.45
    102.711.76102.472.34103.341.08
    苯并[a]蒽124.492.78125.462.04122.112.31
    114.452.71112.342.29116.561.39
    苯并[b]荧蒽124.491.32126.492.25122.281.68
    苯并[k]荧蒽102.102.12102.382.02100.021.58
    苯并[a]芘96.232.8494.682.2199.381.38
    茚并[1,2,3-cd]芘128.172.98133.241.38130.292.87
    二苯并[a,h]蒽122.692.09129.892.47133.682.09
    苯并[g,h,i]苝88.961.9787.891.3592.231.88
    下载: 导出CSV

    表  7   实验样品中多环芳烃的检测结果(μg/kg)

    Table  7   Determination of PAHs in actual samples (μg/kg)

    样品1样品2样品3样品4样品5样品6
    20.8548.659.246.1212.9434.74
    苊烯NDNDNDNDNDND
    1.782.901.161.451.311.51
    NDNDNDNDNDND
    1.361.271.131.181.251.44
    NDNDNDNDND1.84
    荧蒽0.810.840.450.790.420.55
    4.334.712.084.945.205.47
    苯并[a]蒽NDNDNDNDNDND
    NDNDNDNDNDND
    苯并[b]荧蒽NDNDNDNDNDND
    苯并[k]荧蒽NDNDNDNDNDND
    苯并[a]芘8.538.890.711.601.060.69
    茚并[1,2,3-cd]芘5.866.285.206.915.155.93
    二苯并[a,h]蒽0.360.410.320.480.440.58
    苯并[g,h,i]苝NDNDNDNDNDND
    总量43.8773.9620.2923.4827.7652.76
    注:ND表示未检出。
    下载: 导出CSV
  • [1]

    Mcgrath T E, Wooten J B, Chan W G, et al. Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation[J]. Food & Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association,2007,45(6):1039−1050.

    [2]

    Dobrinas S, Birghila S, Coatu V. Assessment of polycyclic aromatic hydrocarbons in honey and propolis produced from various flowering trees and plants in Romania[J]. Journal of Food Composition & Analysis,2008,21(1):71−77.

    [3]

    Guillén, María D, Sopelana P, et al. Polycyclic aromatic hydrocarbons in liquid smoke flavorings obtained from different types of wood. Effect of storage in polyethylene flasks on their concentrations[J]. Journal of Agricultural & Food Chemistry,2000,48(10):5083−7.

    [4]

    Bubba M D, Zanieri L, Galvan P, et al. Determination of polycyclic aromatic hydrocarbons (PAHs) and total fats in human milk[J]. Annali Di Chimica,2010,95(9-10).

    [5]

    Moret S, Piani B, Bortolomeazzi R, et al. HPLC determination of polycyclic aromatic hydrocarbons in olive oils[J]. Zeitschrift Für Lebensmittel-Untersuchung und-Forschung A,1997,205(2):116−120.

    [6]

    Mônica C R C, Maria C F T. Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits[J]. Food Control,2003,14(1):49−53. doi: 10.1016/S0956-7135(02)00052-X

    [7]

    Mottier P, Parisod, Véronique, et al. Quantitative determination of polycyclic aromatic hydrocarbons in barbecued meat sausages by gas chromatography coupled to mass apectrometry[J]. Journal of Agricultural & Food Chemistry,2000,48(4):1160−1166.

    [8]

    Chen J, Chen S. Removal of polycyclic aromatic hydrocarbons by low density polyethylene from liquid model and roasted meat[J]. Food Chemistry,2005,90(3):461−469. doi: 10.1016/j.foodchem.2004.05.010

    [9]

    Khan R, Islam M S, Tareq A R M, et al. Distribution, sources and ecological risk of trace elements and polycyclic aromatic hydrocarbons in sediments from a polluted urban river in central Bangladesh[J]. Environmental Nanotechnology Monitoring & Management,2020,14:100318.

    [10]

    Pulleyblank C, Kelleher B, Campo P, et al. Recovery of polycyclic aromatic hydrocarbons and their oxygenated derivatives in contaminated soils using aminopropyl silica solid phase extraction[J]. Chemosphere,2020,258:127314. doi: 10.1016/j.chemosphere.2020.127314

    [11] 余可垚, 林宏, 胡国绅, 等. 进出口肉制品中多环芳烃检测方法研究进展分析[J]. 食品安全导刊,2021(12):173−174.
    [12] 乔双雨, 龙明华, 张会敏, 等. 正交试验优化蔬菜中多环芳烃检测前处理工艺[J]. 食品工业科技,2019,40(23):104−110,118.
    [13] 杨调调, 何志勇, 秦昉, 等. 美拉德反应对产品风味品质的影响及其衍生危害物研究进展[J]. 食品安全质量检测学报,2017,8(3):854−861.
    [14]

    Demetris K, Andri K, Eftychia C, et al. Determination of polycyclic aromatic hydrocarbons in traditionally smoked meat products and charcoal grilled meat in Cyprus[J]. Meat Science,2020,164(Jun.):108088.1−108088.6.

    [15]

    Andrés J R, Abdelmonaim A, Evaristo B. Trace level determination of polycyclic aromatic hydrocarbons in raw and processed meat and fish products from European markets by GC-MS[J]. Food Control,2019:101.

    [16]

    Ledesma E, Rendueles M, Díaz M. Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention[J]. Food Control,2016(60):64−87.

    [17] 张渝, 张新申, 杨坪, 等. 减压吹扫捕集-气相色谱-质谱联用分析水样中的多环芳烃[J]. 分析化学,2011,39(6):799−803.
    [18]

    Fushimi A, Hashimoto S, Ieda T, et al. Thermal desorption - comprehensive two-dimensional gas chromatography coupled with tandem mass spectrometry for determination of trace polycyclic aromatic hydrocarbons and their derivatives[J]. Journal of Chromatography A,2012,1252:164−170. doi: 10.1016/j.chroma.2012.06.068

    [19] 肖昭竞, 童兰艳, 代政华, 等. 肉制品中多环芳烃检测技术研究进展[J]. 食品工业,2019,40(12):244−247.
    [20] 安长伟, 贾思齐, 杨悦锁, 等. 超声提取-气相色谱法测定土壤中多环芳烃(PAHs)的实验研究[J]. 应用化工,2017,46(3):597−600.
    [21] 方杰. 浙江沿海沉积物和海洋生物中持久性有机污染物及重金属的分析与研究[D]. 杭州: 浙江大学, 2007.
    [22] 周贻兵, 李磊, 吴玉田, 等. 高效液相色谱荧光法测定PM2.5中[a]芘含量[J]. 微量元素与健康研究,2020,37(5):61−62.
    [23]

    Gustav G, Prasanna E, Ashantha G, et al. Optimized simultaneous pressurized fluid extraction and in-cell clean-up, and analysis of polycyclic aromatic hydrocarbons (PAHs), and nitro-, carbonyl-, hydroxy-PAHs in solid particles[J]. Analytica Chimica Acta,2020(1125):19−28.

    [24] 林晶. 加压流体萃取-气质联用法测定土壤中15种多环芳烃[J]. 科技创新与应用,2020(9):121−125.
    [25] 李国文, 吉正元, 杨春涛, 等. 加速溶剂萃取-气相色谱质谱法测定土壤中16种多环芳烃研究[J]. 安全与环境学报,2019,19(2):591−599.
    [26] 王彤彤. 多环芳烃在斑马鱼体内的生物富集效应研究[D]. 大连: 大连海事大学, 2019.
    [27] 邓晓燕, 张大海, 李先国. 气相色谱法测定水体中多环芳烃的前处理方法优化[J]. 分析试验室,2015,34(5):525−528.
    [28] 齐颖. 油炸肉制品加工过程中多环芳烃的形成及控制研究[D]. 天津: 天津科技大学, 2015.
    [29] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 2762-2017 食品安全国家标准 食品中污染物限量[S]. 北京: 中国标准出版社, 2017.
图(2)  /  表(7)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-29
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-08-14

目录

/

返回文章
返回