Identification of Fruit Beers Based on Static Headspace-Gas Chromatography-Ion Mobility Spectroscopy (SH-GC-IMS)
-
摘要: 以菠萝、苹果和蔓越莓等三种果啤为研究对象,采用静态顶空气相离子迁移谱(static headspace-gas chromatography-ion mobility spectrometry, SH-GC-IMS)对样品中的挥发性有机物(volatile organic compounds, VOCs)进行分析,采用主成分分析(principal component analysis, PCA)方法对VOCs数据进行判别和分类。结果表明:基于GC-IMS指纹图谱的二维数据可视化方法筛选出乙醇、乙酸异戊酯、己酸乙酯、异戊醇、丁酸乙酯、苯甲醛、辛酸乙酯等35个香气特征离子峰,可以作为表征三种果啤产品风味差异信息的特征变量;三组果啤样品在PCA图中离散性好,均得到不同的归属区域,两个主成分累积贡献率达到98%,可以有效区分三种不同果啤产品的主要香气。这为果啤生产过程的质量控制、产品溯源、品牌鉴定与保护提供了一种新方法。
-
关键词:
- 静态顶空气相离子迁移谱 /
- 果啤 /
- 挥发性有机物 /
- 主成分分析 /
- 风味鉴别
Abstract: The volatile organic compounds (VOCs) of three kinds of fruit beer, namely pineapple, apple and cranberry beers were investigated, and the VOCs data was discriminated and classified by using principal component analysis (PCA) method. The results showed that a total of 35 effective characteristic ionic peaks of the VOCs mainly ethanol, isoamyl acetate, ethyl hexanoate, isoamyl alcohol, ethyl butyrate, benzaldehyde, and ethyl octanoate were selected by the two-dimensional mode of data visualization based on the SH-GC-IMS fingerprint, which could be used to characterize the flavor differences among the selected fruit beers. Discrimination and classification of the three kinds of fruit beer was effectively performed by using PCA method with good dispersion, and all groups had corresponding attribution areas in the PCA map and the cumulative contribution rate of the first two PCs was 98%, which could be used to distinguish the aroma characteristics of different fruit beer products. Anyway, the results offer a new method for process control, product traceability, brand identification and protection in fruit beer industry. -
果啤作为一种重要的精酿啤酒产品,兼具啤酒清爽口感和水果的香甜味道,受到越来越多消费者的青睐[1]。我国啤酒市场的果啤产品主要有果味啤酒、果汁啤酒和果酿啤酒三个类型[2]。据报道,啤酒中超过1000种化合物已被鉴定出来,包括如酯、醇、酸、醛、酮、烃、醚、硫化物、脂环族化合物、芳香族化合物、杂环化合物等,它们源自麦汁、啤酒花和酵母等原料本身。制麦及糖化、啤酒花的添加、酵母的酒精发酵等生产工艺都对啤酒最终的香气和风味有着重要影响[3]。果啤中由于添加的水果原料来源及方式不同,其风味更加多样化[4]。目前,针对啤酒中挥发性香气成分的判别研究主要基于电子鼻(electronic nose,EN)[5]、电子舌(electronic tongue,ET)[6]、核磁共振(nuclear magnetic resonance spectroscopy,NMR)[7]、GC-MS[8]和GC-O[9]的方法,存在样品必须经过衍生化处理、色谱柱分离温度高、分析时间长和受人工经验的限制等不足之处。离子迁移谱(ion mobility spectrometry, IMS)技术是二十世纪七十年代发展起来的一门新兴的化学分析技术,它是以离子化分子在载体缓冲气体中的迁移率为基础,在气相中对其进行分离和识别,然后根据电场中气相离子迁移速率的差异来表征化学离子物质,最早被用于痕量化学战剂和非法药物的探测[10]。鉴于其体积小、灵敏度高、适用范围广、分析时间快、样品前处理简单,且可在常压和室温下工作,近年来在生物化学[11]、药剂学[12]和食品[13]等诸多领域得到广泛关注。在食品科学领域,IMS被尝试用于食品组分分析、加工过程监测、产品风味评价和溯源等方面[14-15]。与传统GC-MS的方法相比,气相离子迁移谱(GC-IMS)要求样品处理及分析的温度较低,更能反映样品真实状态,目前在白酒、黄酒和果酒关键香气物质解析过程中得到广泛关注[16-19],但关于啤酒中香气成分分析的研究未见报道[20]。
本研究选择菠萝、苹果和蔓越莓三种果啤为研究对象,采用静态顶空气相离子迁移谱技术构建挥发性有机物(volatile organic compounds,VOCs)的风味指纹图谱,通过提取差异化合物的特征离子迁移峰,结合主成分分析(principal component analysis,PCA)对不同果啤样品中关键香气物质进行判别,以期为果啤生产过程的质量控制、产品溯源、品牌鉴定与保护提供新的思路,为进一步阐明不同种类果啤的香气形成机制提供科学依据。
1. 材料与方法
1.1 材料与仪器
菠萝、苹果和蔓越莓果啤 均为广州珠江啤酒股份有限公司2019年生产,购自当地超市;N-ketones C4~C9标准品 美国AccuStandard公司。
Flavour Spec®食品风味分析与质量控制系统(配有CTC自动顶空进样器、Laboratory Analytical Viewer(LAV)分析软件、三款插件(Reporter、Gallery Plot、Dynamic PCA)以及GC × IMS Library Search) 德国G.A.S公司。
1.2 实验方法
1.2.1 静态顶空气相离子迁移谱(static headspace-gas chromatography-ion mobility spectroscopy,SH-GC-IMS)分析
啤酒样品存放于4 ℃条件下,分析前轻轻打开,在酒体中部快速吸取2 mL并转移至20 mL体积的顶空进样瓶中,半旋瓶盖,置于4 ℃超声水浴28 kHz下脱气3 s,停止5 s,再脱气3 s,以除去CO2。Flavour Spec®风味分析仪顶空进样体积100 μL;孵育时间5 min;孵育温度60 ℃;进样针温度65 ℃;孵化转速500 r/min;高纯度氮气为载气;清洗时间0.5 min。
1.2.2 GC条件
FS-SE-54-CB-1 15 m ID: 0.53 mm石英毛细管柱,柱温60 ℃;载气:高纯度氮气(≥99.999%);载气流速程序:初始2.0 mL/min,保持2 min,8 min内线性增至100 mL/min,10 min内线性增至150 mL/min,运行时间20 min。
1.2.3 IMS条件
漂移管长度98 mm;管内线性电压500 V/cm;漂移管温度45 ℃;漂移气为高纯度氮气(≥99.999%);漂移气流速150 mL/min;放射源为β射线(氚,3H);离子化N-ketones C4~C9 模式:正离子。
1.3 数据处理
每个样品分析均重复四次。LAV:用于查看分析谱图,图中每一个点代表一种挥发性有机物;对其建立标准曲线后可进行定量分析;Reporter插件:直接对比样品之间的谱图差异(二维俯视图和三维谱图);Gallery Plot插件:指纹图谱对比,直观且定量地比较不同样品之间的挥发性有机物差异;Dynamic PCA插件:动态主成分分析,用于将样品聚类分析,以及快速确定未知样品的种类;GC × IMS Library Search:通过软件内置的NIST数据库和IMS数据库对化合物进行定性分析,其中N-ketones为标准参照物。
2. 结果与分析
2.1 不同品种果啤的挥发性化合物GC-IMS图谱分析
应用SH-GC-IMS技术对菠萝、苹果和蔓越莓果啤中的挥发性成分进行分析,得到气相离子迁移谱图(图1),其中,A为挥发性有机物的三维谱图(保留时间、迁移时间和峰强度),从图1中可以直观看出,菠萝、苹果和蔓越莓果啤样品间挥发性有机物存在明显差异。进一步通过数据的降维处理,得到二维谱图(B),其中,横坐标代表离子迁移时间(min),纵坐标代表气相色谱的保留时间(s)。通过比较离子漂移时间和离子峰强度实现对各组分的定性和相对定量分析。横坐标8.0处红色竖线为反应离子峰(RIP峰),RIP峰两侧的每一个信号点代表一种挥发性成分。颜色代表物质的浓度,白色表示浓度较小,红色表示浓度较大,颜色越深表示浓度越大。
2.2 不同品种果啤的挥发性化合物GC-IMS图谱分析
根据挥发性成分气相色谱保留时间和离子迁移时间对果啤挥发性组分进行定性分析,共计确定检测出35种挥发性化学成分(表1),同一种化合物的单体和二聚体视为一种化合物。这35种物质主要为酯类、醇类、酚类、烯类和醛类,这与文献中报道的挥发性成分测定结果较一致[21-22]。其中,22种为酯类。
表 1 GC-IMS鉴别不同果啤样品中的挥发性成分Table 1. Identification of volatile compounds in different fruit beers by GC-IMS挥发性成分 化学式 分子量 RIa Rt(s)b Dt [RIPrel]c 1 辛酸甲酯(Methyl octanoate) C9H18O2 158.2 1119.8 508.622 1.4607 Md 2 辛酸甲酯(Methyl octanoae) C9H18O2 158.2 1117.0 504.495 2.0183 De 3 乙酸庚酯(Heptyl acetate) C9H18O2 158.2 1111.0 495.555 1.937 D 4 乙酸庚酯(Heptyl acetate) C9H18O2 158.2 1112.4 497.618 1.4092 M 5 己酸丙酯(Propyl hexanoate) C9H18O2 158.2 1091.1 465.982 1.3827 M 6 己酸丙酯(Propyl hexanoate) C9H18O2 158.2 1090.6 465.294 1.859 D 7 庚酸乙酯(Ethyl heptanoate) C9H18O2 158.2 1063.5 425.405 1.4092 M 8 庚酸乙酯(Ethyl heptanoate) C9H18O2 158.2 1066.4 429.531 1.9353 D 9 己酸乙酯(Ethyl hexanoate) C8H16O2 144.2 1007.5 350.44 1.3428 M 10 己酸乙酯(Ethyl hexanoate) C8H16O2 144.2 1007.5 350.44 1.7959 D 11 苯甲醛(Benzaldehyde) C7H6O 106.1 965.1 305.737 1.1486 12 乙酸异戊酯(Isopentyl acetate) C7H14O2 130.2 883.5 246.59 1.3046 M 13 乙酸异戊酯(Isopentyl acetate) C7H14O2 130.2 884.7 247.278 1.7494 D 14 丁酸乙酯(Ethyl butanoate) C6H12O2 116.2 799.6 205.325 1.2067 M 15 丁酸乙酯(Ethyl butanoate) C6H12O2 116.2 801.2 206.013 1.5569 D 16 异戊醇(3-Methyl-1-butanol) C5H12O 88.1 740.2 180.919 1.5109 17 乙酸乙酯(Ethyl acetate) C4H8O2 88.1 616.0 146.42 1.3359 18 乙醇(Ethanol) C2H6O 46.1 473.2 118.598 1.1402 19 异丁醇(2-Methylpropanol) C4H10O 74.1 636.5 150.649 1.3736 20 辛酸乙酯(Ethyl octanoate) C10H20O2 172.3 1265.1 724.544 1.4826 21 甲基麦芽酚(Maltol) C6H6O3 126.1 1107.5 490.345 1.2104 22 反-2-辛烯醛((E)-2-Octenal) C8H14O 126.2 1048.2 403.534 1.3291 M 23 反-2-辛烯醛((E)-2-Octenal) C8H14O 126.2 1049.4 405.292 1.8171 D 24 乙酸甲酯(Methyl hexanoate) C7H14O2 130.2 932.8 278.933 1.6752 D 25 乙酸甲酯(Methyl hexanoate) C7H14O2 130.2 932.8 278.933 1.2882 M 26 戊酸乙酯(Ethyl pentanoate) C7H14O2 130.2 909.0 262.288 1.275 M 27 戊酸乙酯(Ethyl pentanoate) C7H14O2 130.2 907.3 261.154 1.6752 D 28 2-甲基丁酸乙酯(Ethyl 2-methylbutanoate) C7H14O2 130.2 853.7 230.512 1.6449 29 2-甲基丁酸甲酯(Methyl 2-methylbutanoate) C6H12O2 116.2 773.8 194.371 1.53 30 丙酸乙酯(Ethyl propanoate) C5H10O2 102.1 712.0 170.749 1.4516 31 丙酸(Propionic acid) C3H6O2 74.1 687.6 163.164 1.3504 32 3-甲基-1-戊醇(3-Methylpentanol) C6H14O 102.2 851.9 229.612 1.6008 33 2-甲基丙酸乙酯(Ethyl 2-methylpropanoate) C6H12O2 116.2 752.3 185.618 1.5575 D 34 异戊醛(3-Methylbutanal) C5H10O 86.1 652.8 154.265 1.4036 D 35 异戊醛(3-Methylbutanal) C5H10O 86.1 653.9 154.518 1.1881 M 36 2-甲基丙酸乙酯(Ethyl 2-methylpropanoate) C6H12O2 116.2 754.9 186.629 1.2006 M 37 丁醛(Butanal) C4H8O 72.1 656.1 155.024 1.2896 38 柠檬烯(Limonene) C10H16 136.2 1022.5 369.053 1.2134 39 庚醛(Heptanal) C7H14O 114.2 901.1 257.174 1.6984 40 乙酸丁酯(Butyl acetate) C6H12O2 116.2 811.9 210.745 1.618 D 41 乙酸丁酯(Butyl acetate) C6H12O2 116.2 807.5 208.801 1.2387 M 42 乙酸异丁酯(Isobutyl acetate) C6H12O2 116.2 763.5 190.125 1.6108 43 丙酸2-甲基丁酯(2-Methylbutyl propionate) C8H16O2 144.2 976.0 316.091 1.3544 M 44 丙酸2-甲基丁酯(2-Methylbutyl propionate) C8H16O2 144.2 976.7 316.812 1.8392 D 45 丁酸异丁酯(Isobutyl butyrate) C8H16O2 144.2 943.5 287.276 1.7523 D 46 丁酸异丁酯(Isobutyl butyrate) C8H16O2 144.2 942.2 286.226 1.3093 M 47 异丁酸甲酯(Methyl isobutyrate) C5H10O2 102.1 680.7 161.252 1.4405 48 丁酸甲酯(Methyl butanoate) C5H10O2 102.1 720.5 173.677 1.4292 49 壬醛(Nonanal) C9H18O 142.2 1099.8 478.93 1.9368 注:a表示保留指数;b表示毛细管气相色谱柱中的保留时间;c表示漂移管中的迁移时间;d 表示dimer,二聚体;e表示monome单体。 2.3 果啤挥发性化合物指纹图谱比较
为进一步快速对比出不同品种果啤之间风味物质的差异,通过Gallery Plot插件做指纹图谱对比,在特定果啤的谱图上选取信号峰,系统生成特征指纹图谱,该特征指纹图谱用于鉴别待测样品是否为特定种类的果啤。由图2可以看出,乙醇和异戊醇在三种果啤中都存在,异戊醇是啤酒中重要的醇,赋予啤酒水果香味和指甲油气味[23]。乙酸乙酯、乙酸异戊酯和己酸乙酯在三种果啤中都有较高的浓度,它们赋予啤酒水果味、甜味和花香味[24]。从图2可以看出,不同果啤挥发性有机物差别较大。菠萝果啤中,辛酸甲酯、乙酸庚酯、己酸丙酯、庚酸乙酯、己酸乙酯和丁酸乙酯浓度较高,且酯在菠萝啤酒中占比最大,与前述文献报道结果非常吻合[25]。值得注意的是,辛酸甲酯是菠萝啤酒的特征挥发性物质,它可能来源于菠萝[26]。苹果果啤中,乙酸异戊酯、3-甲基戊醇、乙酸丁酯、乙酸异丁酯、丁醛、庚酸甲酯和2-甲基丁酸甲酯浓度较高,乙酸丁酯是唯一在苹果啤酒中检测到的挥发性物质,它赋予啤酒好的风味,对苹果果啤香气骨架起到重要支撑作用[27]。蔓越莓果啤中异戊醛、辛酸乙酯、2-甲基丁酸乙酯、丙酸、2,3-二乙基-5-甲基吡嗪、己酸、α-蒎烯、苯乙醛、甲硫基丙醛、水杨酸甲酯和柠檬烯浓度较高,辛酸乙酯、2-甲基丁酸乙酯和己酸在蔓越莓果汁和蔓越莓果酒中都有检出[28]。根据GC-IMS的指纹图谱可找到三种果啤中挥发性风味成分的关键差异物,通过关键差异物质建立特征香气模型,即可实现不同品种果啤产品的鉴别。
2.4 果啤特征挥发性化合物的主成分分析
由图2可以直观看出不同果啤中挥发性成分差异较大,但不同品种之间的数字化表达没能实现,需进一步用化学计量方法来确定。因此,运用数理统计分析方法,对不同果啤样品中的挥发性化合物进行主成分分析和聚类分析,将不同品种果啤的特征差异明显化,以建立更精准的区分方法。前述三种果啤样品的PCA得分图和载荷图见图3。由图3可以看出,乙醇、乙酸异戊酯、己酸乙酯、异戊醇、丁酸乙酯、苯甲醛、辛酸乙酯分布在PC1的正向轴,对PC1(67%)贡献较大。乙醇、乙酸异戊酯、己酸乙酯、异戊醇、丁酸乙酯、己酸丙酯、庚酸乙酯、辛酸甲酯分布在PC2的正向轴,对PC2(31%)贡献较大。苹果果啤和蔓越莓果啤中异戊醇含量较高,菠萝果啤中己酸乙酯含量相对较高,与图2结果吻合。三组果啤样品在得分图上彼此相距都比较远,说明离散性良好,关键挥发性化合物得到了很好地分离。上述结果表明,采用HS-GC-IMS联合PCA统计分析方法,能够很好地辨别菠萝、苹果和蔓越莓果啤的香气类型。
3. 结论
采用SH-GC-IMS技术对菠萝、苹果和蔓越莓三种果啤进行挥发性化合物组成分析,获得了不同样品挥发性化合物指纹谱图,通过IMS指纹图谱的二维数据可视化技术筛选出乙醇、乙酸异戊酯、己酸乙酯、异戊醇、丁酸乙酯、苯甲醛、辛酸乙酯等35种挥发性化合物的特征离子峰,作为表征三种果啤产品风味差异信息的特征变量,不同种类的果啤样品在PCA图中得到了较好地归类,两个主成分累积贡献率达到98%,可以有效区分三种不同果啤产品的主要香气。结合聚类分析可辨别出三种果啤挥发性成分之间的主要差异。不同的挥发性成分组成决定了不果啤风味差异,以此可以区分不同种类果啤产品,这为果啤企业实施生产过程控制、产品溯源、品牌鉴定与保护提供了新方法。
-
表 1 GC-IMS鉴别不同果啤样品中的挥发性成分
Table 1 Identification of volatile compounds in different fruit beers by GC-IMS
挥发性成分 化学式 分子量 RIa Rt(s)b Dt [RIPrel]c 1 辛酸甲酯(Methyl octanoate) C9H18O2 158.2 1119.8 508.622 1.4607 Md 2 辛酸甲酯(Methyl octanoae) C9H18O2 158.2 1117.0 504.495 2.0183 De 3 乙酸庚酯(Heptyl acetate) C9H18O2 158.2 1111.0 495.555 1.937 D 4 乙酸庚酯(Heptyl acetate) C9H18O2 158.2 1112.4 497.618 1.4092 M 5 己酸丙酯(Propyl hexanoate) C9H18O2 158.2 1091.1 465.982 1.3827 M 6 己酸丙酯(Propyl hexanoate) C9H18O2 158.2 1090.6 465.294 1.859 D 7 庚酸乙酯(Ethyl heptanoate) C9H18O2 158.2 1063.5 425.405 1.4092 M 8 庚酸乙酯(Ethyl heptanoate) C9H18O2 158.2 1066.4 429.531 1.9353 D 9 己酸乙酯(Ethyl hexanoate) C8H16O2 144.2 1007.5 350.44 1.3428 M 10 己酸乙酯(Ethyl hexanoate) C8H16O2 144.2 1007.5 350.44 1.7959 D 11 苯甲醛(Benzaldehyde) C7H6O 106.1 965.1 305.737 1.1486 12 乙酸异戊酯(Isopentyl acetate) C7H14O2 130.2 883.5 246.59 1.3046 M 13 乙酸异戊酯(Isopentyl acetate) C7H14O2 130.2 884.7 247.278 1.7494 D 14 丁酸乙酯(Ethyl butanoate) C6H12O2 116.2 799.6 205.325 1.2067 M 15 丁酸乙酯(Ethyl butanoate) C6H12O2 116.2 801.2 206.013 1.5569 D 16 异戊醇(3-Methyl-1-butanol) C5H12O 88.1 740.2 180.919 1.5109 17 乙酸乙酯(Ethyl acetate) C4H8O2 88.1 616.0 146.42 1.3359 18 乙醇(Ethanol) C2H6O 46.1 473.2 118.598 1.1402 19 异丁醇(2-Methylpropanol) C4H10O 74.1 636.5 150.649 1.3736 20 辛酸乙酯(Ethyl octanoate) C10H20O2 172.3 1265.1 724.544 1.4826 21 甲基麦芽酚(Maltol) C6H6O3 126.1 1107.5 490.345 1.2104 22 反-2-辛烯醛((E)-2-Octenal) C8H14O 126.2 1048.2 403.534 1.3291 M 23 反-2-辛烯醛((E)-2-Octenal) C8H14O 126.2 1049.4 405.292 1.8171 D 24 乙酸甲酯(Methyl hexanoate) C7H14O2 130.2 932.8 278.933 1.6752 D 25 乙酸甲酯(Methyl hexanoate) C7H14O2 130.2 932.8 278.933 1.2882 M 26 戊酸乙酯(Ethyl pentanoate) C7H14O2 130.2 909.0 262.288 1.275 M 27 戊酸乙酯(Ethyl pentanoate) C7H14O2 130.2 907.3 261.154 1.6752 D 28 2-甲基丁酸乙酯(Ethyl 2-methylbutanoate) C7H14O2 130.2 853.7 230.512 1.6449 29 2-甲基丁酸甲酯(Methyl 2-methylbutanoate) C6H12O2 116.2 773.8 194.371 1.53 30 丙酸乙酯(Ethyl propanoate) C5H10O2 102.1 712.0 170.749 1.4516 31 丙酸(Propionic acid) C3H6O2 74.1 687.6 163.164 1.3504 32 3-甲基-1-戊醇(3-Methylpentanol) C6H14O 102.2 851.9 229.612 1.6008 33 2-甲基丙酸乙酯(Ethyl 2-methylpropanoate) C6H12O2 116.2 752.3 185.618 1.5575 D 34 异戊醛(3-Methylbutanal) C5H10O 86.1 652.8 154.265 1.4036 D 35 异戊醛(3-Methylbutanal) C5H10O 86.1 653.9 154.518 1.1881 M 36 2-甲基丙酸乙酯(Ethyl 2-methylpropanoate) C6H12O2 116.2 754.9 186.629 1.2006 M 37 丁醛(Butanal) C4H8O 72.1 656.1 155.024 1.2896 38 柠檬烯(Limonene) C10H16 136.2 1022.5 369.053 1.2134 39 庚醛(Heptanal) C7H14O 114.2 901.1 257.174 1.6984 40 乙酸丁酯(Butyl acetate) C6H12O2 116.2 811.9 210.745 1.618 D 41 乙酸丁酯(Butyl acetate) C6H12O2 116.2 807.5 208.801 1.2387 M 42 乙酸异丁酯(Isobutyl acetate) C6H12O2 116.2 763.5 190.125 1.6108 43 丙酸2-甲基丁酯(2-Methylbutyl propionate) C8H16O2 144.2 976.0 316.091 1.3544 M 44 丙酸2-甲基丁酯(2-Methylbutyl propionate) C8H16O2 144.2 976.7 316.812 1.8392 D 45 丁酸异丁酯(Isobutyl butyrate) C8H16O2 144.2 943.5 287.276 1.7523 D 46 丁酸异丁酯(Isobutyl butyrate) C8H16O2 144.2 942.2 286.226 1.3093 M 47 异丁酸甲酯(Methyl isobutyrate) C5H10O2 102.1 680.7 161.252 1.4405 48 丁酸甲酯(Methyl butanoate) C5H10O2 102.1 720.5 173.677 1.4292 49 壬醛(Nonanal) C9H18O 142.2 1099.8 478.93 1.9368 注:a表示保留指数;b表示毛细管气相色谱柱中的保留时间;c表示漂移管中的迁移时间;d 表示dimer,二聚体;e表示monome单体。 -
[1] 苗方, 康健, 王德良. 果啤的研究进展[J]. 酿酒,2010,37(3):75−77. doi: 10.3969/j.issn.1002-8110.2010.03.026 [2] 王松廷. 西瓜精酿啤酒酿造工艺的研究及其风味物质分析[D]. 郑州: 河南大学, 2016. [3] 莫芬. 小麦面筋蛋白水解物对酵母增殖代谢及啤酒发酵的影响研究[D]. 广州: 华南理工大学, 2014. [4] Prasad M. In-vitro evaluation of antioxidant properties of fermented fruit beer samples[J]. International Journal of Science and Research,2014,3(11):1545−1550.
[5] Ghasemi-Vamamkhasti M, Mohtasebi S S, Siadat M, et al. Aging fingerprint characterization of beer using electronic nose[J]. Sensors and Actuators B: Chemical,2011,159(1):51−59. doi: 10.1016/j.snb.2011.06.036
[6] Ceto X, Gutierrez-Capitan M, Calvo D, et al. Beer classification by means of a potentiometric electronic tongue[J]. Food Chemistry,2013,141(3):2533−2540. doi: 10.1016/j.foodchem.2013.05.091
[7] Augusto D S L, Luiz F D, Gomes T A, et al. Discrimination of Brazilian lager beer by 1H NMR spectroscopy combined with chemometrics[J]. Food Chemistry,2019,272:488−493. doi: 10.1016/j.foodchem.2018.08.077
[8] Anderson H E, Santos I C, Hildenbrand Z L, et al. A review of the analytical methods used for beer ingredient and finished product analysis and quality control[J]. Analytica Chimica Acta,2019,1085:1−20. doi: 10.1016/j.aca.2019.07.061
[9] Kishimoto T, Noba S, Yako N, et al. Simulation of Pilsner-type beer aroma using 76 odor-active compounds[J]. Journal of Bioscience and Bioengineering,2018,126(3):330−338. doi: 10.1016/j.jbiosc.2018.03.015
[10] Krechmer J E, Groessl M, Zhang X, et al. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on-and offline analysis of atmospheric gas and aerosol species[J]. Atmospheric Measurement Techniques,2016,9(7):3245−3262. doi: 10.5194/amt-9-3245-2016
[11] Sheibani A, Haghpazir N. Application of ion mobility spectrometry for the determination of tramadol in biological samples[J]. Journal of Food and Drug Analysis,2014,22(4):500−504. doi: 10.1016/j.jfda.2014.02.001
[12] Sobel J D, Karpas Z, Lorber A. Diagnosing vaginal infections through measurement of biogenic amines by ion mobility spectrometry[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology,2012,163(1):81−84.
[13] Hernandez-Mesa M, Escourrou A, Monteau F, et al. Current applications and perspectives of ion mobility spectrometry to answer chemical food safety issues[J]. Trac Trends in Analytical Chemistry,2017,94:39−53. doi: 10.1016/j.trac.2017.07.006
[14] Hernandez-Mesa M, Ropartz D, Garcia-Campana A M, et al. Ion mobility spectrometry in food analysis: Principles, current applications and future trends[J]. Molecules,2019,24:2706. doi: 10.3390/molecules24152706
[15] Wang S Q, Chen H T, Sun B G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Food Chemistry,2020,315:126158. doi: 10.1016/j.foodchem.2019.126158
[16] 葛含光, 温华蔚, 宋旭, 等. 离子迁移谱法检测蒸馏酒中4种风味成分[J]. 食品安全质量检测学报,2016,7(2):834−838. [17] 黄星奕, 吴梦紫, 马梅, 等. 采用气相色谱-离子迁移谱技术检测黄酒风味物质[J]. 现代食品科技,2019,35(9):271−276, 226. [18] Tang Z S, Zeng X A, Margaret A, et al. Characterization of aroma profile and characteristic aromas during lychee wine fermentation[J]. Journal of Food Processing and Preservation,2019,43(8):e14003.
[19] Garrido-Delgado R, Arce L, Guaman A V, et al. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools[J]. Talanta,2011,84(2):471−479. doi: 10.1016/j.talanta.2011.01.044
[20] Vautz W, Baumbach J I, Jung J. Beer fermentation control using ion mobility spectrometry-results of a pilot study[J]. Journal of the Institute of Brewing, 2006, 112(2): 157−164.
[21] 张俊杰, 尚益民, 彭姗姗, 等. 产香酵母的筛选及其苹果酒发酵特性[J]. 中国酿造,2019,38(8):31−35. doi: 10.11882/j.issn.0254-5071.2019.08.007 [22] 潘咏梅. 菠萝汁及加工、发酵过程中风味变化的研究[D]. 北京: 北京化工大学, 2007. [23] Siebert T E, Smyth H E, Capone D L, et al. Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS[J]. Analytical & Bioanalytical Chemistry,2005,381(4):937−947.
[24] Yan X, Fan W, Qian M C. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction[J]. Journal of Agricultural & Food Chemistry,2007,55(8):3051−3057.
[25] Pino J A, Queris O. Analysis of volatile compounds of pineapple wine using solid-phase microextraction techniques[J]. Food Chemistry,2010,122(4):1241−1246. doi: 10.1016/j.foodchem.2010.03.033
[26] Takeoka G, Rg B, Flath R, et al. Volatile constituents of pineapple (Ananas Comosus [L. ] Merr.)[J]. ACS Symposium Series,1989,388(1):223−237.
[27] Sancho M F, Rao M A, Downing D L. Infinite dilution activity coefficients of apple juice aroma compounds[J]. Journal of Food Engineering,1997,34(2):145−158. doi: 10.1016/S0260-8774(97)89919-0
[28] Zhang J, Kilmartin P A, Peng Y, et al. Identification of key aroma compounds in cranberry juices as influenced by vinification[J]. Journal of Agricultural and Food Chemistry,2020,68(1):279−291. doi: 10.1021/acs.jafc.9b07165