Screening and Identification of Enrofloxacin Degrading Strain and Optimization of Its Degradation Conditions
-
摘要: 从长期处理含恩诺沙星猪粪的黑水虻肠道中,筛选出可降解恩诺沙星的菌株,并对菌株降解过程中的环境因素进行优化,获得较优的降解条件,为研究恩诺沙星生物降解的途径提供理论基础。将黑水虻肠液加入含有恩诺沙星的培养基中培养,经过两次筛选,从若干株具有降解恩诺沙星能力的菌种中挑选降解能力最强的一株菌株,通过单因素实验确定该菌株最适降解条件:温度、初始pH、接种量、摇床转速,根据单因素实验结果运用响应面分析得出最佳降解条件。结果表明,初筛获得17株对恩诺沙星具有降解作用的菌株,在进一步复筛中发现3株能以恩诺沙星为唯一碳源的菌株,对三株进行分子生物学鉴定,鉴定BSFL-1和BSFL-3为粪肠球菌(Enterococcus faecalis)和BSFL-2为奇异变形杆菌(Proteus mirabilis)。其中降解率最高的菌株为BSFL-3。经响应面分析各因素交互作用后,最佳降解条件为:温度33.6℃、初始pH5.8、接种量为4%、摇床转速155 r/min。在此条件下,恩诺沙星的降解率为77.83%±0.53%。降解条件优化后的菌株具有较高的降解率,拓宽了生物法降解恩诺沙星的研究领域,为利用细菌降解率恩诺沙星应用研究提供帮助。Abstract: In order to study the biodegradation of enrofloxacin,a strain was screened from the the gut of black soldier fly,which had been used to treat the pig manure containing enrofloxacin for a long time. The intestinal juice of black soldier fly was cultured in the medium containing enrofloxacin. After twice screening,the strain with the strongest ability to degrade enrofloxacin was selected from several strains with the ability to degrade enrofloxacin. The optimal degradation conditions were determined by single factor experiment: Temperature,initial pH,inoculum amount and shaking speed. According to the results of single factor experiment,the optimal degradation conditions were obtained by response surface analysis. Results showed that,17 strains of enrofloxacin degrading bacteria were obtained in the initial screening,and 3 strains of enrofloxacin degrading bacteria were found in the further re-screening. BSFL-1 and BSFL-3 were identified as Enterococcus faecalis and BSFL-2 as Proteus mirabilis. The strain with the highest degradation rate was BSFL-3. By response surface analysis,the optimal degradation conditions were as follows:Temperature 33.6 ℃,initial pH5.8,inoculation amount 4%,shaking speed 155 r/min. Under these conditions,the degradation rate of enrofloxacin was 77.83%±0.53%. The strain with optimized degradation conditions has high degradation rate,which broadens the research field of biological degradation of enrofloxacin,and provides help for the application research of using bacterial degradation rate of enrofloxacin.
-
Keywords:
- enrofloxacin /
- kinetics /
- screening /
- degradation conditions /
- response surface
-
[1] 周伟澄,张秀平. 氟喹诺酮药物研究新进展[J]. 中国新药杂志,2000,9(10):667-670. [2] Barbosa J,Barron D,Jiménez-Lozano E,et al. Comparison between capillary electrophoresis,liquid chromatography,potentiometric and spectrophotometric techniques for evaluation of pKa values of zwitterionic drugs in acetonitrile-water mixtures[J].Analytica Chimica Acta,2001,437:309-321.
[3] Van Doorslaer X,Dewulf J,Van Langenhove H,et al. Fluoroquinolone antibiotics:An emerging class of environmental micropollutants[J]. Science of The Total Environment,2014,500-501:250-269.
[4] Girardi C,Greve J,Lamshöft M,et al. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities[J]. Journal of Hazardous Materials,2011,198:22-30.
[5] Andrieu M,Rico A,Tran Minh P,et al. Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta,Vietnam[J]. Chemosphere,2014,119:407-414.
[6] Rico A,Dimitrov M R,Van Wijngaarden R P A,et al. Effects of the antibiotic enrofloxacin on the ecology of tropical eutrophic freshwater microcosms[J]. Aquatic Toxicology,2014,147:92-104.
[7] Carlsson G,Patring J,Kreuger J,et al. Toxicity of 15 veterinary pharmaceuticals in zebrafish(Danio rerio)embryos[J]. Aquatic Toxicology,2013,126:30-41.
[8] Migliore L,Cozzolino S,Fiori M. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere,2003,52(7):1233-1244.
[9] 张秋萍,李建,王春民. 苏州市水产品中喹诺酮类抗生素残留水平及安全性评价[J]. 中国卫生检验杂志,2012,22(10):2417-2418. [10] Li X,Xie Y F,Li C L,et al. Investigation of residual fluoroquinolones in a soil-vegetable system in an intensive vegetable cultivation area in Northern China[J]. Science of the Total Environment,2014,468-469:258-264.
[11] Sultan I. Detection of enrofloxacin residue in livers of livestock animals obtained from a slaughterhouse in Mosul city[J]. Journal of Veterinary Science & Technology,2014,5(2):157-162.
[12] 倪永炯,程永清,徐梦苑,等. 纳米零价铜活化分子氧降解水中恩诺沙星[J]. 环境科学,2019,40(1):293-299. [13] Rakhshandehroo G,Salari M,Nikoo M R. Optimization of degradation of ciprofloxacin antibiotic and assessment of degradation products using full factorial experimental design by Fenton homogenous process[J]. Global Nest Journal,2018,20(2):556-559.
[14] 梁爱凤,韩深,梁娜娜,等. 不同电子束能量和剂量辐照降解恩诺沙星有机污染物[J]. 环境化学,2018,37(9):2025-2030. [15] 郭春晓.微波无极紫外灯直接光降解去除水中抗生素恩诺沙星机理研究[D]. 北京:北京交通大学,2017. [16] 郭家磊,李蕊宁,谢晓芸. 重金属镉对UV/H2O2在不同水体中降解恩诺沙星的影响[J]. 兰州大学学报(自然科学版),2018,54(3):303-309. [17] 王栋,张雅明,刘富永,等. 磁性多壁碳纳米管的制备及对恩诺沙星的吸附性能[J]. 化学试剂,2020,42(3):232-237. [18] 陈琼,丁惠君,张维昊,等. 滨湖底泥对2种喹诺酮类抗生素的吸附作用研究[J]. 环境科学与技术,2019,42(6):106-114. [19] 高金龙,陈轶凡,李纪薇,等. Ti/PbO2电化学法降解废水中三种氟喹诺酮类抗生素[J]. 中国环境科学,2020,40(6):2454-2463. [20] 熊若晗,汤题. 光催化技术处理抗生素废水研究进展[J].环境与可持续发展,2017,42(2):114-117. [21] 杨文焕,王超慧,高乃云,等. 环丙沙星在水中的高级氧化去除方法研究进展[J]. 应用化工,2016,45(10):1959-1964 ,1968.
[22] 王振方,韩子玉,王梦雪,等. 胶网藻对水体中恩诺沙星的毒性响应及去除作用[J]. 环境科学,2020,41(6):2688-2697. [23] 吴学玲,吴晓燕,李交昆,等. 一株四环素高效降解菌的分离及降解特性[J]. 生物技术通报,2018,34(5):172-178. [24] 陶美.四环素降解菌筛选及其降解特性研究[D]. 成都:西南交通大学,2018. [25] 刘姗姗,陈玉立,洪文,等. 1株耐铜、锌离子土霉素降解菌的筛选鉴定及特性[J]. 华南农业大学学报,2020,41(3):56-62. [26] 朱平平,单杨,夏金兰,等. 降解柠檬苦素菌株的筛选鉴定及其发酵条件的优化[J]. 食品工业科技,2020(19):1-21.
计量
- 文章访问数: 412
- HTML全文浏览量: 30
- PDF下载量: 34