• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

米糠发酵产物抑制α-葡萄糖苷酶的工艺优化

赖晓桦, 邓甜, 胡经飞, 陈德宁, 吕明生, 王淑军

赖晓桦, 邓甜, 胡经飞, 陈德宁, 吕明生, 王淑军. 米糠发酵产物抑制α-葡萄糖苷酶的工艺优化[J]. 食品工业科技, 2021, 42(4): 128-134. DOI: 10.13386/j.issn1002-0306.2020040183
引用本文: 赖晓桦, 邓甜, 胡经飞, 陈德宁, 吕明生, 王淑军. 米糠发酵产物抑制α-葡萄糖苷酶的工艺优化[J]. 食品工业科技, 2021, 42(4): 128-134. DOI: 10.13386/j.issn1002-0306.2020040183
LAI Xiaohua, DENG Tian, HU Jingfei, CHEN Dening, LV Mingsheng, WANG Shujun. Optimization of Inhibition of α-Glucosidase by Rice Bran Fermentation Products[J]. Science and Technology of Food Industry, 2021, 42(4): 128-134. DOI: 10.13386/j.issn1002-0306.2020040183
Citation: LAI Xiaohua, DENG Tian, HU Jingfei, CHEN Dening, LV Mingsheng, WANG Shujun. Optimization of Inhibition of α-Glucosidase by Rice Bran Fermentation Products[J]. Science and Technology of Food Industry, 2021, 42(4): 128-134. DOI: 10.13386/j.issn1002-0306.2020040183

米糠发酵产物抑制α-葡萄糖苷酶的工艺优化

基金项目: 

国家重点研发项目(2018YFC0311106):江苏省研究生科研与实践创新计划(SJCX18_0948)。

详细信息
    作者简介:

    赖晓桦(1992-),女,硕士研究生,研究方向:微生物及活性物质,E-mail:huaxiaolai10@163.com。

    通讯作者:

    王淑军(1965-),女,博士,教授,研究方向:微生物、生物技术,E-mail:shujunwang86@163.com。

  • 中图分类号: TS213.3

Optimization of Inhibition of α-Glucosidase by Rice Bran Fermentation Products

  • 摘要: 本研究用枯草芽孢杆菌MK15对米糠进行发酵,发现其产物对α-葡萄糖苷酶的活性具有较强的抑制作用。通过单因素实验及响应面法对发酵条件进行了优化。结果表明,米糠发酵最优条件为:培养温度为35℃、时间为50 h、pH为8.0。在此条件下,米糠发酵物对α-葡萄糖苷酶的抑制率达到88.8%,比优化前提高了25.1%。通过扫描电镜和傅里叶红外光谱对抑制产物进行了初步表征,发现米糠发酵产物为含侧链的多糖类物质,脱水后可形成多孔块状结构。
    Abstract: In this study,the α-glucosidase inhibitors were produced by rice bran fermentation of Bacillus subtilis MK15. In order to increase the yield of α-glucosidase inhibitors,the fermentation parameters were optimized using single-factor experiments and response surface methodology. Results showed that,the optimal parameters were cultivation temperation 35 ℃,time 50 h,and pH8.0. Under the optimal conditions,the inhibitory rate of α-glucosidase was 88.8%,which was 25.1% higher than before.The structure of purified fermentation products was characterized by scanning electron microscope and Fourier infrared chromatography and the fermentation products of rice bran were polysaccharides with side chains which could form bulk with small porous.
  • [1] 曹龙奎,康丽君,寇芳,等. 改性前后小米糠膳食纤维结构分析及体外抑制α-葡萄糖苷酶活性[J]. 食品科学,2018,576(11):53-59.
    [2] 文伟,刘磊,张名位,等. 脱脂米糠复合酶解工艺条件优化及其营养特性评价[J]. 中国农业科学,2015,48(8):1597-1608.
    [3]

    Cho N H,Shaw J E,Karuranqa S,et al. IDF Diabetes Atlas:Global estimates of diabetes prevalence for 2017 and projections for 2045[J]. Diabetes Research and Clinical Practice,2018,138:271-281.

    [4] 韩瑨,吴正钧,刘振民,等. 牛类芽孢杆菌BD3526产α-葡萄糖苷酶抑制剂的条件优化[J]. 食品与发酵工业,2019,45(19):45-51.
    [5]

    Joshi S R,Standi E,Tong N,et al. Therapeutic potential of alpha-glucosidase inhibitors in type 2 diabetes mellitus:An evidence-based review[J]. Expert Opinion on Pharmacotherapy,2015,16(13):1958-1981.

    [6]

    Nurcholis W,Munshif A A,Ambarsari L. Xanthorrhizol contents,α-glucosidase inhibition,and cytotoxic activities in ethyl acetate fraction of Curcuma zanthorrhiza accessions from Indonesia[J]. Revista Brasileira de Farmacognosia,2018,28(1):44-49.

    [7]

    Yuan Shu. Possible FDA-approved drugs to treat Ebola virus infection[J]. Infectious Diseases of Poverty,2015,4(1):23.

    [8]

    Alauddin M,Shriakawa H,Koseki T,et al. Fermented rice bran supplementation mitigates metabolic syndrome in stroke-prone spontaneously hypertensive rats[J]. Bmc Complementary & Alternative Medicine,2016,16(1):442.

    [9]

    Jo Sunghoon,Cho Chayoung,Lee Jungyoon,et al. In vitro and in vivo reduction of post-prandial blood glucose levels by ethyl alcohol and water Zingiber mioga extracts through the inhibition of carbohydrate hydrolyzing enzymes[J]. BMC Complementary and Alternative Medicine,2016,16(1):111.

    [10]

    Ketmaee S,Weeropan S,Poungrat P,et al. Rice bran protein hydrolysates reduce arterial stiffening,vascular remodeling and oxidative stress in rats fed a high-carbohydrate and high-fat diet[J]. European Journal of Nutrition,2018,57(1):219-230.

    [11] 熊能,韦圣,胡忠策. α-葡萄糖苷酶抑制剂的研究进展和趋势[J]. 发酵科技通讯,2018.47(1):58-64.
    [12]

    Tang Chu,Zhu Linhui,Chen Yu,et al. Synthesis and biological evaluation of oleanolic acid derivative-chalcone conjugates as α-glucosidase inhibitors[J]. Rsc Advances,2014,4(21):10862.

    [13]

    Barakat A,Soliman S,Al-majid A M,et al. Synthesis and structure investigation of novel pyrimidine-2,4,6-trione derivatives of highly potential biological activity as anti-diabetic agent[J]. Journal of Molecular Structure,2015,1098:365-376.

    [14]

    Taha M,Ismail N H,Salima L,et al. Synthesis of novel inhibitors of α-glucosidase based on the benzothiazole skeleton containing benzohydrazide moiety and their molecular docking studies[J]. European Journal of Medicinal Chemistry,2015,92:387-400.

    [15] 邹荣灿,吴少锦,焦思棋,等. 不同产地青钱柳多糖的体外抗氧化及α-葡萄糖苷酶抑制活性[J]. 食品工业科技,2018,39(22):31-35.
    [16]

    Chung Yunchin,Chang Chengtien,Chao Wenwan,et al. Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1[J]. Journal of Agricultural and Food Chemistry,2002,50(8):2454-2458.

    [17]

    Inouye S,Tsuruoka T,Nida T. The structure of nojirimycin,a piperidinose sugar antibiotic[J]. The Journal of Antibiotics,1966,19(6):288-292.

    [18] 朱运平,程永强,刘海杰,等. 不同菌种发酵豆渣产α-葡萄糖苷酶抑制因子的研究[J]. 中国粮油学报,2008,23(4):77-81.
    [19] 张友维,张晖,王立,等. 枯草芽孢杆菌发酵制备花生多肽及其自由基清除活力的研究[J]. 中国油脂,2011,36(10):30-34.
    [20]

    Shin E C,Lee J H,Hwang C E,et al. Enhancement of total phenolic and isoflavone-aglycone contents and antioxidant activities during Cheongguk jang fermentation of brown soybeans by the potential probiotic Bacillus subtilis CSY191[J]. Food Science & Biotechnology,2014,23(2):531-538.

    [21] 罗斌,邱波,谢作桦. 枯草芽孢杆菌发酵米糠制备活性肽及其抗氧化性评价[J]. 安徽农业科学,2017,45(2):122-124.
    [22]

    Thamabiraj S R,Phillips M,Koyyalamudi S R,et al. Antioxidant activities and characterisation of polysaccharides isolated from the seeds of Lupinus angustifolius[J]. Industrial Crops and Products,2015,74:950-956.

    [23] 杜宝香,相美容,付业佩,等. 北沙参多糖的分离、纯化及其体外免疫活性考察[J]. 中国实验方剂学杂志,2018,24(11):27-31.
    [24]

    Ma C M,Hattori M,Daneshtalalab M,et al. Chlorogenic acid derivatives with alkyl chains of different lengths and orientations:Potent α-glucosidase inhibitors[J]. Journal of Medicinal Chemistry,2008,51(19):6188-6194.

    [25] 涂宗财,段邓乐,王辉,等. 豆渣膳食纤维的结构表征及其抗氧化性研究[J]. 中国粮油学报,2015(6):22-26.
    [26]

    Wang Binbin,Song Qiaozhi,Zhao Fangkun,et al. Isolation and characterization of dextran produced by Lactobacillus Sakei L3 from Hubei sausage[J]. Carbohydrate Polymers,2019,223:115-111.

    [27] 何春百,张贤松,冯国智,等. 基于响应面分析的聚合物驱注入参数优化方法[J]. 当代化工,2014,43(3):380-382

    ,386.

    [28]

    Purama R K,Goswami P,Khan A T,et al. Structural analysis and properties of dextran produced by Leuconostoc Mesenteroides NRRL B-640[J]. Carbohydrate Polymers,2008,76(1):30-35.

    [29]

    Kavita K,Mishra A,Bhavanath J. Extracellular polymeric substances from two biofilm forming Vibrio species:Characterization and applications[J]. Carbohydrate Polymers,2013,94(2):882-888.

    [30]

    Zhou Qingqing,Feng Fang,Yang Yangfang,et al. Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine[J]. International Journal of Biological Macromolecules,2017,107:2234-2241.

    [31]

    Sajna K V,Sukumaran R K,Gottumukkalal D,et al. Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp NⅡ 08165[J]. International Journal of Biological Macromolecules,2013,59(4):84-89.

计量
  • 文章访问数:  216
  • HTML全文浏览量:  13
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-15
  • 网络出版日期:  2021-03-01
  • 刊出日期:  2021-02-14

目录

    /

    返回文章
    返回