• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

玉蜀黍不同部位提取物对α-葡萄糖苷酶和α-淀粉酶抑制作用

杨小倩, 孙佳明, 吴楠, 高旭, 郅慧, 吴淇, 张辉, 李晶峰

杨小倩, 孙佳明, 吴楠, 高旭, 郅慧, 吴淇, 张辉, 李晶峰. 玉蜀黍不同部位提取物对α-葡萄糖苷酶和α-淀粉酶抑制作用[J]. 食品工业科技, 2021, 42(1): 15-21,27. DOI: 10.13386/j.issn1002-0306.2020030142
引用本文: 杨小倩, 孙佳明, 吴楠, 高旭, 郅慧, 吴淇, 张辉, 李晶峰. 玉蜀黍不同部位提取物对α-葡萄糖苷酶和α-淀粉酶抑制作用[J]. 食品工业科技, 2021, 42(1): 15-21,27. DOI: 10.13386/j.issn1002-0306.2020030142
YANG Xiao-qian, SUN Jia-ming, WU Nan, GAO Xu, ZHI Hui, WU Qi, ZHANG Hui, LI Jing-feng. Inhibitory Effects of Extracts from Different Parts of Maize on α-Glucosidase and α-Amylase[J]. Science and Technology of Food Industry, 2021, 42(1): 15-21,27. DOI: 10.13386/j.issn1002-0306.2020030142
Citation: YANG Xiao-qian, SUN Jia-ming, WU Nan, GAO Xu, ZHI Hui, WU Qi, ZHANG Hui, LI Jing-feng. Inhibitory Effects of Extracts from Different Parts of Maize on α-Glucosidase and α-Amylase[J]. Science and Technology of Food Industry, 2021, 42(1): 15-21,27. DOI: 10.13386/j.issn1002-0306.2020030142

玉蜀黍不同部位提取物对α-葡萄糖苷酶和α-淀粉酶抑制作用

基金项目: 

长春市医药健康产业科技创新重大专项(18YJ004)。

详细信息
    作者简介:

    杨小倩(1993-),女,硕士研究生,研究方向:中药化学,E-mail:yangxiaoqian1111@163.com。

    通讯作者:

    张辉(1958-),男,本科,教授,研究方向:中药化学,E-mail:zhanghui_8080@163.com

    李晶峰(1989-),女,博士,研究方向:中药化学,E-mail:lijingfeng8161@163.com。

  • 中图分类号: TS201.1

Inhibitory Effects of Extracts from Different Parts of Maize on α-Glucosidase and α-Amylase

  • 摘要: 目的:探究玉蜀黍不同部位(须、秸秆皮、秸秆芯)提取物对α-葡萄糖苷酶和α-淀粉酶活性抑制作用。方法:采用常规理化方法测定玉蜀黍不同部位中总黄酮、总皂苷、总多糖、总蛋白质提取物的含量,酶底物反应法和3,5-二硝基水杨酸比色法测定α-葡萄糖苷酶和α-淀粉酶抑制活性,考察不同pH、温度、时间对α-葡萄糖苷酶和α-淀粉酶活性影响。结果:抑制α-葡萄糖苷酶反应最优条件:反应pH6.8、温度37℃、时间20 min;抑制α-淀粉酶反应最优条件:pH6.8、温度37℃、时间10 min。玉蜀黍不同部位总黄酮(5.80%~18.23%)、总皂苷(7.87%~10.99%)、总多糖(24.48%~35.36%)、总蛋白质(9.41%~13.02%)含量存在明显差异,玉蜀黍不同部位的总黄酮提取物对α-葡萄糖苷酶抑制作用显著,玉蜀黍须、秸秆芯、秸秆皮中总黄酮提取物对α-葡萄糖苷酶的半数抑制浓度(IC50)分别为:0.63、0.35、0.13 mg/mL;须、秸秆皮、秸秆芯中总黄酮提取物质量浓度在1、0.5、0.125 mg/mL时对α-淀粉酶最大抑制率分别为:36.41%±0.26%、21.46%±1.45%、14.63%±0.62%。结论:玉蜀黍不同部位中发挥抑制α-葡萄糖苷酶和α-淀粉酶活性作用主要有效成分群是总黄酮。
    Abstract: Objective: To study the inhibitory effects of extracts from different parts of maize(whisker,straw skin,straw core)on the activities of α-glucosidase and α-amylase. Methods: The contents of total flavonoids,total saponins,total polysaccharides and total protein extracts in different parts of maize were determined by routine physical and chemical methods. The inhibitory activities of α-glucosidase and α-amylase were determined by enzyme substrate reaction and 3,5-dinitrosalicylic acid colorimetry. The effects of different pH,temperature and time on the activities of α-glucosidase and α-amylase were investigated. Results: the optimal conditions of α-glucosidase inhibition were pH6.8,temperature 37 ℃,time 20 min,and pH6.8,temperature 37 ℃,time 10 min. The content of total flavone(5.80%~18.23%),total saponin(7.87%~10.99%),total polysaccharide(24.48%~35.36%)and total protein(9.41%~13.02%)in different parts of maize were significantly different. The inhibitory effect of total flavone extract in different parts of maize on α-glucosidase was significant. The IC50 of total flavone extract in whisker,straw core and straw skin was 0.63,0.35 and 0.13 mg/mL,respectively The maximum inhibition rates of α-amylase at 1,0.5 and 0.125 mg/mL were 36.41%±0.26%,21.46%±1.45% and 14.63%±0.62%. Conclusion: Total flavonoids are the main active components in different parts of maize,which can inhibit the activities of α-glucosidase and α-amylase.
  • [1]

    Xu Y,Wang L M,He J,et al. Prevalence and control of diabetes in Chinese adults[J]. JAMA,2013,310(9):948-958.

    [2]

    Jarald E,Joshi S B,Jain D C. Diabetes and herbal medicines[J]. Iranian Journal of Pharmacology & Therapeutics,2008,7(1):97-106.

    [3]

    Chinenye S,Young E E. Isolated postprandial hyperglycemia in type 2 diabetic patients in a Nigerian tertiary health center[J]. Indian Journal of Endocrinology and Metabolism,2012,16(4):604-608.

    [4]

    Min P J,Yoon B H,In J H,et al. Postprandial hypoglycemic effect of mulberry leaf in Goto-Kakizaki rats and counterpart control Wistar rats[J]. Nutrition Research and Practice,2009,3(4):272-278.

    [5] 熊能,韦圣,胡忠策. α-葡萄糖苷酶抑制剂的研究进展和趋势[J].发酵科技通讯,2018,47(1):58-64.
    [6] 许有瑞,伊辉,张可锋,等.瑶药葫芦钻中α-葡萄糖苷酶抑制活性部位的筛选[J].中国药房,2017,28(16):2235-2237.
    [7]

    Zhu H,Tian L,Zhang L,et al. Preparation,characterization and antioxidant activity of polysaccharide from spent L entinusedodes substrate[J].International Journal of Biological Macromolecules,2018,112:976-984.

    [8]

    Ma Y,Wang C,Zhang Q,et al. The effects of polysaccharides from Auricularia auricula(Huaier)in adjuvant ant-gastrointestinal cancer therapy:A systematic review and network meta-analysis[J].Pharmacological Research,2018,132:80-89.

    [9]

    Qin Y,Xiong L,Li M,et al. Preparation of bioactive polysaccharide nanoparticles with enhanced radical scavenging activity and antimicrobial activity[J].Journal of Agricultural and Food Chemistry,2018,66(17):4373-4383.

    [10] 刘树成.口服降糖药物的分类和特点[J].北方药学,2015,12(12):127.
    [11] 张众一,张淇,揭毅,等.玉米须多糖对糖尿病小鼠肝损伤及糖代谢的影响[J].山东大学学报(医学版),2018,56(5):52-57.
    [12] 郭胜男,刘洪斌,李东华,等.番石榴叶总黄酮对糖尿病小鼠肝脏葡萄糖代谢及胰岛素信号通路的影响[J].中国实验方剂学杂志,2015,21(4):166-170.
    [13] 陈雅妮,李琼,任顺成.玉米须黄酮研究进展[J].安徽农业科学,2017,45(24):131-133

    ,139.

    [14]

    Chao J,Su W H.Baicalein induces cancer cell death and proliferation retardation by the inhibition of CDC2 kinase and survivin associated with opposite role of p38 mitogen-activated protein kinase and AKT[J]. Mol Cancer Ther,2007,6:3039-3048.

    [15] 黄淑芳,应华洲,胡永洲.含氮姜黄素衍生物的合成及抗肿瘤活性研究[J].中国药物化学杂志,2011,21(2):88-95.
    [16] 黄伟. 新型类黄酮衍生物的设计、合成及抗肿瘤活性研究[D].武汉:华中师范大学,2008.
    [17] 李萍,宋娟,李清漪,等.玉米须黄酮提取物对改良急性痛风性关节炎模型大鼠的疗效分析[J].中国当代医药,2018,25(34):8-11.
    [18] 苗明三,张桂兰,苗艳艳,等.玉米须总皂苷对大鼠糖尿病模型肾脏和胰脏超微结构的影响[J].中国中药杂志,2008(10):1179-1183.
    [19] 赵妮,邓毅,刘靓,等.甘草内生菌20株有效菌株发酵物与宿主水煎液、总黄酮、总皂苷体外抑菌活性对比研究[J].中医研究,2016,29(5):66-70.
    [20] Sun Z X,Hou S Y,Ling H B,et al. Correlation analysis on rutin accumulation and gene expression of rutin synthetic enzymes and MYBs in the whole development stage of Fagopyrum te-tericum[J] Scientia Agr Sci(中国农业科学),2017,50:3473-3481.
    [21] 苏箐,李晓燕.玉米须总皂苷提取方法比较研究[J].河南城建学院学报,2014,23(4):56-60.
    [22] 赵二劳,杨洁,高子怡,等.玉米多糖提取纯化工艺研究进展[J].粮食与油脂,2018,31(5):18-20.
    [23] 刘媛,薛慧中,杨文革,等.玉米须多糖的提取及含量测定[J].南京中医药大学学报,1999(2):28-29,68.
    [24] 张娟娟,熊越怀,贺文彬,等.响应曲面试验优选远志糖蛋白的提取工艺[J].中华中医药杂志,2016,31(10):4226-4229.
    [25] 吴光杰,李玉萍,陈美琴,等.马齿苋多糖蛋白含量测定及脱蛋白方法研究[J].时珍国医国药,2015,26(7):1577-1579.
    [26]

    Yuan T,Wan C,Liu K,et al. New maplexins F-I and phenolic glycosides from red maple(Acer rubrum)bark[J]. Tetrahedron,2012,68(4):959-964.

    [27]

    Ali H,Houghton P J,Soumyanath A. a-Amylase inhibitory activity of some Malaysian plants used to treat diabetes;with particular reference to Phyllanthus amarus[J]. J Ethnopharmacol,2006,107(3):449-455.

    [28] 常波,毛明婷,谭云,等.超声波辅助法提取植物黄酮的工艺研究[J].价值工程,2018,37(33):242-245.
    [29] 李培.山药多糖对α-葡萄糖苷酶抑制作用动力学研究[J].食品与机械,2016,32(7):14-17.
    [30] 冯学珍,覃慧逢,冯书珍.网地藻多糖对α-葡萄糖苷酶体外抑制作用的研究[J].食品研究与开发,2020,41(3):35-40.
    [31] 周笑犁,雷娅,雷霁卿,等.番茄发酵液对α-淀粉酶活性的抑制作用[J].食品工业科技,2020,41(3):65-68

    ,73.

    [32] 陈睿,曾阳,黄元,等.灰栒子提取物对α-淀粉酶抑制作用的初步研究[J].食品科技,2009,34(11):243-245.
    [33] 魏振奇,蔡文卓,郑晓娟,等.齐墩果酸对α-淀粉酶及脂肪酶的抑制作用[J].吉林医药学院学报,2017,38(2):26-29.
    [34] 廖彭莹,李承曼,黄志祥,等.杨桃不同部位提取物抑制α-葡萄糖苷酶的作用[J].大众科技,2018,20(10):36-37

    ,58.

    [35] 周晓婷,张根义.苦荞提取物成分分析及不同极性提取物对α-淀粉酶的抑制作用[J].食品科学,2017,38(18):42-47.
    [36] 阿依仙木·加帕尔,闫冬,何雯,等.维药石榴花多酚提取物对α-葡萄糖苷酶和α-淀粉酶抑制作用的研究[J].新疆医科大学学报,2013,36(5):581-583

    ,587.

    [37] 刘娟,韩晓强,姜博.玉米须多糖治疗糖尿病作用研究[J].时珍国医国药,2006(8):1441-1442.
    [38] 马天成,孙宇,刘雷.玉米须黄酮类成分提取工艺及抗氧化活性物质基础研究[J].中国现代应用药学,2019,36(22):2794-2799.
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 网络出版日期:  2021-01-07
  • 刊出日期:  2020-12-31

目录

    /

    返回文章
    返回