TVB-N prediction of tilapia with scales by information fusion of near infrared spectrum technology and sensory evaluation during chilled storage
-
摘要: 应用可见/近红外光谱技术与感官评价信息融合实现冷藏条件下有鳞罗非鱼不同部位鱼肉挥发性盐基氮(TVB-N)的预测。通过便携式近红外光谱仪采集有鳞罗非鱼胸部、中部和尾部鱼肉在3401063 nm的光谱数据,分别采用卷积平滑法、变量标准化、一阶(1st Der)和二阶(2nd Der)导数进行光谱预处理,利用连续投影算法(SPA)提取罗非鱼不同部位鱼肉的特征波长,建立鱼肉光谱与TVB-N偏最小二乘回归(PLSR)模型,结果表明尾部鱼肉的1st Der-SPA-PLSR模型预测均方根误差(RMSEP)=1.1295 mg/100 g,预测相关系数(Rp2)=0.8998,预测结果高于其胸部和中部鱼肉模型,并稍高于尾部鱼肉全波段模型。因此,选择尾部鱼肉作为罗非鱼光谱采样区域。为进一步提高模型预测准确性,将尾部鱼肉特征光谱数据与感官评价进行信息融合。通过对比尾部鱼肉光谱、尾部鱼肉光谱与感官评价融合的SPA-PLSR、SPA-BP神经网络和SPA-偏最小二乘支持向量机(LS-SVM)模型,结果表明,尾部光谱和感官评价信息融合的SPA-LS-SVM模型预测结果为RMSEP=0.9701 mg/100 g,Rp2=0.9255,能更准确预测罗非鱼冷藏条件下TVB-N变化。为冷藏过程中罗非鱼新鲜度预测方法提供了新的思路。Abstract: The information fusion of near infrared spectrum technology and sensory evaluation was applied to predict the freshness of different parts for tilapia with scales during chilled storage.Spectral signatures ofbreast, middle and tail region in the range of 340 ~ 1063 nm were extracted.Smoothing Savitzky-Golay ( SG) , standard normal variate ( SNV) , polynomial derivative filters ( 1 st Der and 2 nd Der) were used for spectral pre-processing.Partial least square regression ( PLSR) was used to correlate the whole wavelengths spectra with total volatile basic nitrogen ( TVB-N) .Optimal wavelengths of different tilapia positions were selected by successive projections algorithm ( SPA) to develop new SPA-PLSR models, and the SPA-PLSR predictive performances of tails position ( root mean square error of prediction ( RMSEP) = 1.1295 mg/100 g, determination coefficient ( Rp2) = 0.8998) was better than that of breast and middle region, and also better than whole wavelengths model of tails region.Therefore, tail region was selected as spectrum sampling area.In order to evaluate the comprehensively fish freshness and improve the accuracy of model, spectral data and sensory evaluation were integrated for nondestructive measurement of freshness for tail region of tilapia based on PLSR, back-propagation artificial neural network ( BP-ANN) and least squares support vector machines ( LS-SVM) . Compared with single characteristic, information fusion of spectral data and sensory evaluation for LS-SVM had its superiority, which achieved accurate results with Rp2 of 0.9255, RMSEP of 0.9701 mg/100 g.This result indicated that information fusion by integrating spectral data and sensory evaluation could significantly improve the TVB-N prediction performance, and it has tremendous potential in prediction of freshness in fish during chilled storage.
-
Keywords:
- near infrared spectrum technology /
- tilapia /
- freshness /
- predictive model /
- storage /
- information fusion
-
[1] 杨弘.我国罗非鱼产业现状及产业技术体系建设[J].中国水产, 2010 (9) :6-10. [2] 黄涛, 李小昱, 彭毅, 等.基于近红外光谱的淡水鱼新鲜度在线检测方法研究[J].光谱学与光谱分析, 2014 (10) :2732-2736. [3] 陈伟华, 许长华, 樊玉霞, 等.近红外光谱技术快速无损评价罗非鱼片新鲜度[J].食品科学, 2014, 35 (24) :164-168. [4] Nilsen H, Esaiassen M, Heia K, et al.Visible/Near-Infrared Spectroscopy:A New Tool for the Evaluation of Fish Freshness?[J].Journal of Food Science, 2002, 67 (5) :1821-1826.
[5] Sivertsen A H, Kimiya T, Heia K.Automatic freshness assessment of cod (Gadus morhua) fillets by Vis/Nir spectroscopy[J].Journal of Food Engineering, 2011, 103 (3) :317-323.
[6] 李杉, 马海霞, 李来好, 等.减菌化预处理对鲜罗非鱼片质量的影响[J].食品科学, 2009 (18) :379-384. [7] 史策, 崔建云, 王航, 等.反复冷冻-解冻对鲢品质的影响[J].中国水产科学, 2012, 19 (1) :167-173. [8] 董伟坤.食品检验与分析[Z].北京:中国轻工业出版社, 1989. [9] 李莎, 李来好, 杨贤庆, 等.罗非鱼片在冷藏过程中的品质变化研究[J].食品科学, 2010, 31 (20) :444-447. [10] Hong H, Luo Y, Zhou Z, et al.Effects of low concentration of salt and sucrose on the quality of bighead carp (Aristichthys nobilis) fillets stored at 4 C[J].Food Chemistry, 2012, 133 (1) :102-107.
[11] Olafsdóttir G, Martinsdóttir E, Oehlenschlger J, et al.Methods to evaluate fish freshness in research and industry[J].Trends in Food Science&Technology, 1997, 8 (8) :258-265.
[12] Zhu F, Zhang D, He Y, et al.Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen-thawed fish fillets[J].Food and Bioprocess Technology, 2013, 6 (10) :2931-2937.
[13] B.G.O, T.F.Near Infrared Spectroscopy in Food Analysis[M].New York:Longman Scientific&Technical, 1986.
[14] 朱逢乐.基于光谱和高光谱成像技术的海水鱼品质快速无损检测[D].浙江大学生物系统工程, 2014. [15] Lin M, Cavinato A G, Huang Y, et al.Predicting sodium chloride content in commercial king (Oncorhynchus tshawytscha) and chum (O.keta) hot smoked salmon fillet portions by shortwavelength near-infrared (SW-NIR) spectroscopy[J].Food Research International, 2003, 36 (8) :761-766.
[16] Cheng J, Sun D, Zeng X, et al.Non-destructive and rapid determination of TVB-N content for freshness evaluation of grass carp (Ctenopharyngodon idella) by hyperspectral imaging[J].Innovative Food Science&Emerging Technologies, 2014, 21:179-187.
[17] 顾燕萍, 赵文杰, 吴占松.基于最小二乘支持向量机的电站锅炉燃烧优化[J].中国电机工程学报, 2010, 30 (17) :91-97. [18] Suykens J A, Vandewalle J.Least squares support vector machine classifiers[J].Neural processing letters, 1999, 9 (3) :293-300.
[19] 朱逢乐, 何勇, 邵咏妮.应用近红外高光谱成像预测三文鱼肉的水分含量[J].光谱学与光谱分析, 2015 (1) :113-117.
计量
- 文章访问数: 167
- HTML全文浏览量: 25
- PDF下载量: 207