The formula optimization of fresh ice for aquatic products by response surface methodology
-
摘要: 为解决保鲜介质温度波动大以及保冷时间短对水产品鲜度的影响,本文以聚丙烯酸钠、氯化钠、丙二醇为主要成分,对水产品低温保鲜冰的配方进行优化。在单因素实验的基础上,依据Box-Behnken实验设计原理,采用响应面进行分析,以优化最佳的低温保鲜冰配方。结果表明:低温保鲜冰的最佳配方为聚丙烯酸钠1.0%、氯化钠0.6%、丙二醇2.1%,此低温保鲜冰可在水产品微冻温度带(-3-1.5℃)维持130 min,与传统盐水介质相比延长约60 min。该低温保鲜冰维持低温时间更长、温度更加稳定,能更有利于水产品的贮藏加工。Abstract: To solve the problem of large temperature fluctuation and short cold-keeping time for aquatic products, the fresh ice formula of partial-frozen for aquatic products, such as sodium polyacrylate, sodium chloride and propanediol, were optimized on the basis of single factor experiments at the point of-3 ~-1.5 ℃. Box-Behnken experimental design and response surface methodology (RSM) were used to find the optimal formula. The results showed that the optimal fresh ice formula was 1.0%sodium polyacrylate, 0.6% sodium chloride and 2.1% propanediol, which could keep the temperature of partial-frozen (-3 ~-1.5 ℃) of aquatic for 130 min. Compared with traditional fresh ice of sodium chloride, complex fresh ice could prolong for about 60 min.Therefore, fresh ice formula could keep longer low-temperature time, make the temperature more stable and be helpful for the storage and processing of aquatic products.
-
Keywords:
- preservation /
- fresh ice /
- response surface methodology (RSM) /
- formula optimization
-
[1] 赵良, 岑剑伟, 李来好, 等.高压静电场结合冰温气调保鲜技术对罗非鱼鱼片品质的影响[J].南方水产科学, 2016, 12 (3) :91-97. [2] 郝淑贤, 何丹, 魏涯, 等.鱼卵加工产品类型与鱼籽酱保鲜技术研究进展[J].南方水产科学, 2014, 10 (3) :104-108. [3] Bahuaud D, Morkore T, Langsrud O, et al.Effects of-1.5℃super-chilling on quality of Atlantic salmon (Salmo salar) prerigor Fillets-Cathepsin activity, muscle histology, texture and liquid leakage[J].Food Chemistry, 2008, 111 (2) :329-339.
[4] Gallart-Jornet L, Rustad T, Barat JM, et al.Effect of superchilled storage on the freshness and salting behavior of Atlantic salmon (Salmo salar) fillets[J].Food Chemistry, 2007, 103 (4) :1268-1281.
[5] 罗永康, 孔春丽, 王回忆.低盐低糖处理鲟鱼片冷藏过程中品质变化规律[J].南方水产科学, 2016, 12 (2) :95-101. [6] Magnussen O M, Haugland A, Torstveit AK, et al.Advances in superchilling of food-process characteristics and product quality[J].Trends in food Science&Technology, 2008, 19 (8) :418-424.
[7] Kaale L D, Eikevik T M.Changes of proteins during superchilled storage of Atlantic salmon muscle (Salmo salar) [J].Journal of Food Science and Technology, 2016, 53 (1) :441-450.
[8] 曹荣, 薛长湖, 刘淇, 等.太平洋牡蛎在-3℃微冻贮藏过程中的品质和细菌菌相变化[J].南方水产, 2010, 6 (1) :49-53. [9] 蔡青文, 谢晶.微冻保鲜技术研究进展[J].食品与机械, 2013, 29 (6) :248-252. [10] 洪惠, 朱思潮, 罗永康, 等.鳙在冷藏和微冻贮藏下品质变化规律的研究[J].南方水产科学, 2011, 7 (6) :7-12. [11] 刘美华, 陈丽娇, 童金华, 等.微冻保鲜在水产品中的应用[J].福建农机, 2003, 24 (4) :21-22. [12] 王倩, 孙晓红, 蓝蔚青, 等.保鲜冰在水产品保藏中的应用研究进展[J].食品与机械, 2016, 32 (3) :226-230. [13] 胡玥, 吴春华, 姜晴晴, 等.微冻技术在水产品保鲜中的研究进展[J].食品工业科技, 2015, 36 (9) :384-390. [14] 郭儒岳, 凌建刚, 叶宇飞, 等.流化冰超冷却对养殖大黄鱼贮藏保鲜效果的影响[J].食品工业科技, 2016, 37 (8) :307-312. [15] 杨贤庆, 侯彩玲, 林婉玲, 等.响应面法优化食品浸渍速冻冻结液配方[J].食品科学, 2012, 33 (24) :1-5. [16] 周宇光, 付国平.食用聚丙烯酸钠的特性及应用[J].中国食品添加剂, 2009, 20 (1) :114-117. [17] 冯立品, 周孟颖, 张奋奋.高分子吸水树脂作为蓄冷材料的性能研究[J].化工新型材料, 2012, 40 (7) :55-56. [18] 王静.聚丙烯酸钠增稠剂的合成及工厂设计[D].广州:广东工业大学, 2016. [19] 崔静.聚丙烯酸钠分子量及其分布研究[D].天津:河北工业大学, 2015. [20] .Cipolletti J C, Robertson G H, Farkas D F.Freezing of vegetables by direct contact with aqueous solutions of ethanol and sodium chloride[J].Journal of Food Science, 1977, 42 (4) :911-916.
[21] 俞静芬.淡水鱼鳙鱼的微冻与冰温保鲜技术研究[D].杭州:浙江工业大学, 2007. [22] 梁昌.氯化钠对水冰点及冰融化速率的影响和实验研究[D].青岛:青岛科技大学, 2014. [23] Yue Y, Tan L, Xu Y, et al.Optimization of Combined Drying for Lettuce Using Response Surface Methodology[J].Journal of Food Processing and Preservation, 2016, 40 (5) :1027-1037.
[24] Sin H N, Yusof S, Hamid N S A, et al.Optimization of hot water extraction for sapodilla juice using response surface methodology[J].Journal of Food Engineering, 2006, 74 (3) :352-358.
[25] Asbchin A, Salman.Response surface methodology for cadmium biosorption on Pseudomonas aeruginosa[J].Water Science and Technology, 2016, 73 (11) :2608-2615.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: