• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

转基因成分定量检测技术研究进展

杜智欣, 焦悦, 张亮亮, 朱鹏宇, 付伟

杜智欣, 焦悦, 张亮亮, 朱鹏宇, 付伟. 转基因成分定量检测技术研究进展[J]. 食品工业科技, 2017, (10): 379-384. DOI: 10.13386/j.issn1002-0306.2017.10.065
引用本文: 杜智欣, 焦悦, 张亮亮, 朱鹏宇, 付伟. 转基因成分定量检测技术研究进展[J]. 食品工业科技, 2017, (10): 379-384. DOI: 10.13386/j.issn1002-0306.2017.10.065
DU Zhi-xin, JIAO Yue, ZHANG Liang-liang, ZHU Peng-yu, FU Wei. Development of quantitative detection techniques of genetically modified organisms[J]. Science and Technology of Food Industry, 2017, (10): 379-384. DOI: 10.13386/j.issn1002-0306.2017.10.065
Citation: DU Zhi-xin, JIAO Yue, ZHANG Liang-liang, ZHU Peng-yu, FU Wei. Development of quantitative detection techniques of genetically modified organisms[J]. Science and Technology of Food Industry, 2017, (10): 379-384. DOI: 10.13386/j.issn1002-0306.2017.10.065

转基因成分定量检测技术研究进展

详细信息
    作者简介:

    杜智欣 (1980-) , 男, 博士, 农艺师, 研究方向:转基因生物安全, E-mail:57204302@qq.com。;

    付伟 (1983-) , 女, 博士, 副研究员, 研究方向:转基因生物安全, E-mail:fuwei0212@163.com。;

  • 中图分类号: TS207.3

Development of quantitative detection techniques of genetically modified organisms

  • 摘要: 转基因作物的种类以及含有转基因成分的产品在日益增长,转基因产品的安全性也越来越被社会公众广泛关注。世界各国均颁布转基因安全管理、标识法规,对转基因生物及其加工产品进行标识和管理。如何准确、稳定地对转基因产品中的转基因成分进行定量,已成为转基因产品检测技术研究的重要方向。本文综述了竞争性PCR、荧光定量PCR以及数字PCR等定量检测技术在转基因成分检测中应用及研究进展,讨论了目前各类转基因定量检测技术的优缺点,并在此基础上展望了定量检测技术在转基因成分检测领域的发展前景。 
    Abstract: The concern of public has been more and more focus on the safety of the Genetically Modified Organisms ( GMO) as the rapid development of transgenic techniques and uncertain effect to human beings and environment. Different countries and organizations have declared kinds of safety and labeling laws to achieve the proper regulation to the commercialization of the GM products.In this manner, the achievement of stable and accurate quantitation of GMO content within different kinds of commercialized product has become the key point of the development of GMO detection techniques. In this paper, the application and development of different quantitative detection methods were summarized, such as competitive PCR, real-time PCR, digital PCR and etc. Meanwhile, the advantages and drawbacks of different detection methods were discussed and the future of the quantitative detection methods in the area of GMO content quantitation were predicted.
  • [1]

    Kramkowska M, Grzelak T, Czyz·ewska K.Benefits and risks associated with genetically modified food products[J].Annals of Agricultural and Environmental Medicine, 2013, 20 (1) :413-419.

    [2]

    Qaim M, Kouser S.Genetically Modified Crops and Food Security[J].Plos One, 2013, 8 (6) :1-7.

    [3]

    James C.Global Status of Commercialised Biotech/GM Crops:2013.ISAAA Briefs No.46.

    [4] 张忠民.欧盟转基因食品标识制度浅析[J].世界经济与政治论坛, 2007 (6) :80-83.
    [5]

    Mayer R.Development and application of DNA analytical methods for the detection of GMOs in food[J].Food Control, 1999, 10:391-399.

    [6] 金芜军, 贾士荣, 彭于发.不同国家和地区转基因产品标识管理政策的比较[J].农业生物技术学报, 2004, 12 (1) :1-7.
    [7] 卢长明.我国实施转基因产品定量标识的对策与建议[J].科技导报, 2011, 29 (24) :11.
    [8]

    Gilliland G, Perrin S, Bunn HF, et al.Analysis of cytokine mRNA and DNA:detection and quantition by competitive polymerase chain reaction[J].Proc Natl Acad Sci USA, 1990, 87:2725.

    [9]

    Studer E, Rhyner C, Lüthy J, et al.Quantitative competitive PCR for the detection of genetically modified soybean and maize[J].Eur Food Res Technol, 1998, 207:207-213.

    [10]

    Hardegger M, Brodmann P, Herrmann A.Quantitative detection of the 35S promoter and the NOS terminator using quantitative competitive PCR[J].Eur Food Res Technol, 1999, 209:83-87.

    [11]

    García-Ca1as V, Cifuentes A, González R.Quantitation of transgenic Bt Event-176 maize using double quantitative competitive polymerase chain reaction and capillary gel electrophorsesis laser-induced fluorescence[J].Anal Chem, 2004, 76 (8) :2306-2313.

    [12]

    Mavropoulou AK, Koraki T, Ioannou PC, et al.Highthroughput double quantitative competitive polymerase chain reaction for determination of genetically modified organisms[J].Anal Chem, 2005, 77 (15) :4785-4791.

    [13]

    Kalogianni DP, Elenis DS, Christopoulos TK, et al.Multiplex quantitative competitive polymerase chain reaction based on a multianalyte hybridization assay performed on spectrally encoded microspheres[J].Anal Chem, 2007, 79:6655-6661.

    [14] 苏长青, 谢家建, 王奕海, 等.转基因水稻Bt汕优63的整合结构和品系特异性定量PCR方法[J].农业生物术学报, 2011, 19 (3) :434-441.
    [15]

    Broeders S, Huber I, Grohmann, L, et al.Guidelines for validation ofqualitative real-time PCR methods[J].Trends Food Sci Tech, 2014, 37 (2) :115-126.

    [16] 朱建楚, 胡银岗, 奚亚军, 等.实时荧光定量PCR技术在检测外源基因拷贝数中的应用[J].西北农业学报, 2005, 14 (6) :78-82.
    [17]

    Vaitilingom M, Pijnenburg H, Gendre F, et al.Real-time quantitative PCR detection of genetically modified Maximizer maize and Roundup Ready soybean in some representative foods[J].J Agric Food Chem, 1999, 47 (12) :5261-5266.

    [18] 于晓帆, 高宏伟, 孙敏, 等.荧光PCR和数字PCR法检测转基因DAS-44406-6品系大豆[J].食品科学, 2016, 37 (16) :235-241.
    [19] 孙红炜, 李凡, 杨淑珂, 等.转基因抗虫玉米的定量检测中国农学通报[J].2014 (6) :101-107
    [20] 张丽, 刘丽丽, 梁晓声, 等.实时定量PCR鉴定转基因作物纯合体[J].中南民族大学学报:自然科学版, 2015 (1) :43-46.
    [21] 苏慧慧, 李涛, 谢雯琦, 等.基于实时荧光定量PCR对转基因樱桃番茄外源基因拷贝数的检测[J].分子植物育种, 2015 (2) :345-354.
    [22] 甄贞, 段俊枝, 于艳波, 等.转基因小麦B73-6-1外源基因拷贝数的确定[J].河南农业科学, 2016, 45 (4) :19-22.
    [23] 汪秀秀, 杨捷琳, 宋青, 等.转基因棉花GHB119品系特异性定量PCR检测方法的建立[J].农业生物技术学报, 2014, 22 (3) :380-388.
    [24] 许兰珍, 何永睿, 雷天刚, 等.转基因柑橘外源基因拷贝数的实时荧光定量PCR检测[J].园艺学报, 2016, 43 (6) :1186-1194.
    [25] 焦新萍, 曾金红, 郑云峰, 等.发酵豆制品中转基因成分的荧光定量PCR研究[J].食品研究与开发, 2013 (13) :79-83.
    [26] 张文志, 鲁绯, 闫红.酱油中抗草甘膦大豆转基因多种成分的检测:实时荧光定量PCR和传统PCR的比较[J].江苏农业科学, 2016, 44 (6) :372-376.
    [27] 许安君.实时荧光定量PCR技术在粮油转基因成分检测中的应用[J].粮油食品科技, 2013, 21 (2) :68-70.
    [28] 袁建琴, 赵江河, 史宗勇, 等.动物饲料中转基因抗草甘膦大豆GTS40-3-2成分的检测[J].大豆科学, 2016 (2) :295-300.
    [29]

    Cottenet G, Blancpain C, Sonnard V, et al.Development and validation ofa multiplex real-time PCR method to simultaneously detect 47 targets forthe identification of genetically modified organisms[J].Anal Bioanal Chem, 2013, 405 (21) :6831-6844.

    [30]

    Pansiot J, Chaouachi M, Cavellini L, et al.Development of two screening duplex PCR assays for genetically modified organism quantification using multiplex real-time PCR master mixes[J].Eur Food Res Techno1, 2011, 232 (2) :327-334.

    [31]

    Samson M C, Gulli M, Marmiroli N.Multiplex real-time PCRassays for simultaneous detection of maize MON8IO and GA21 in food samples[J].Food Control, 2013, 30 (2) :518-525.

    [32] 汪秀秀.基于锁核酸技术转基因棉花多重PCR定量检测方法的研究以及标准分子的研制和验证[D].上海:华东理工大学, 2014.
    [33]

    Sanders R, Huggett JF, Bushell CA, et al.Evaluation of digital PCR for absolute DNA quantification[J].Anal Chem, 2011, 83 (17) :6474-6484.

    [34]

    Pinheiro L B, Coleman V A, Hindson C M, et al.Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification[J].Analytical Chemistry, 2012, 84 (2) :1003-1011.

    [35] 李春勇.数字PCR技术原理及应用[J].生物技术世界, 2014 (11) :10-13.
    [36]

    Margulies M, Egholm M, Altman WE.Genome Sequencing in Open Microfabricated High Density Picoliter Reactors[J].Nature, 2005, 437 (7057) :376-380.

    [37]

    Tawfik DS, Griffiths AD.Man-made cell-like compartments for molecular evolution[J].Nature Biotechnology, 1998, 16:652-656.

    [38]

    Burns M J, Burrell A M, Foy C A.The applicability of digital PCR for the assessment of detection limits in GMO analysis[J].European Food Research and Technology, 2010, 231 (3) :353-362.

    [39]

    Pérez Urquiza M, Acatzi Silva AI.Copy number ratios determined by two digital polymerase chain reaction systems in genetically modified grains[J].Metrologia, 2014, 51 (1) :61-66.

    [40] 胡佳莹, 姜羽, 杨立桃.利用Quant Studio TM 3D数字PCR分析转基因玉米MON863含量[J].农业生物技术学报, 2016 (8) :1216-1224.
    [41]

    Dobnik D, Spilsberg B, Bogo6alec A, et al.Multiplex quantification of twelve EU authorized GM maize lines with droplet digital PCR[J].Anal Chem, 2015, 87 (16) :8218-8226.

    [42]

    K9ppel R, Bucher T.Rapid establishment of droplet digital PCR for quantitative GMO analysis[J].Eur Food Res Tech, 2015, 241 (3) :1-13.

    [43] 潘广, 章桂明, 黄新, 等.应用双重数字PCR对转基因玉米成分进行定量方法研究[J].植物检疫, 2016 (3) :65-71.
    [44] 姜志军, 江颖, 徐摇光, 等.利用微滴数字PCR方法快速分析转基因玉米中外源基因的拷贝数[J].生物技术进展, 2016, 6 (4) :288-294.
    [45] 任怡菲, 高琴, 邓婷婷, 等.基于数字PCR的转基因水稻LL62品系精准定量检测方法建立[J].生物技术通报, 2016, 32 (8) :69-76.
    [46] 姜羽, 胡佳莹, 杨立桃.利用微滴数字PCR分析转基因生物外源基因拷贝数[J].农业生物技术学报, 2014, 22 (10) :1298-1305.
    [47] 于晓帆, 高宏伟, 孙敏, 等.荧光PCR和数字PCR法检测转基因DAS-44406-6品系大豆[J].食品科学, 2016 (16) 235-240.
    [48]

    Morisset D, Stebih D, Milavec M, et al.Quantitative analysis of food and feed samples with droplet digital PCR[J].PLo S One, 2013, 8:e62583.

    [49]

    Baker M.Digital PCR hits its stride[J].Nature Methods, 2012, 9 (6) :541-544.

    [50]

    Bhat S, Herrmann J, Armishaw P, et al.Single molecule detection in nanofluidic digital array enables accurate measurement of DNA copy number[J].Analytical and Bioanalytical Chemistry, 2009, 394 (2) :457-467.

    [51]

    Philippe C, Somanath B, Lina P, et al.Absolute quantificationof genetically modified MON810 maize (Zea mays L.) by digital polymerase chain reaction[J].Analytical and Bioanalytical Chemistry, 2010, 396:2143-2150.

    [52] 隋志伟, 余笑波, 王晶, 等.转基因水稻TT51-1标准物质的研制[J].计量学报, 2013, 33 (5) :467-471.
    [53]

    Urquiza M P, Silva A A.Copy number ratios determined by two digital polymerase chain reaction systems in genetically modified grains[J].Metrologia, 2014, 51:61-66.

    [54] 刘津, 刘二龙, 谢力, 等.数字PCR在食品安全检测领域的研究应用进展[J].食品科学, 2016, 37 (17) :275-280.
    [55]

    Engvall E, Jonsson K, Perlmann P.Enzyme-linked immunosorbent assay.II.Quantitative assay of protein antigen immunoglobulin G, by means of enzyme-labelled antigen and antibody-coated tubes[J].Biochim Biophys Acta, 1973, 28:251, 427-434.

    [56]

    Roland JN, John MM, Robert GB.Evaluation of an ELISAassay for rapid detection and quantification of neomycin phosphotransferase II in transgenic plants[J].Plant Molecular Biology Rep, 1992, 10:263-272.

    [57] 白卫滨, 孙建霞, 姜桂传, 等.ELISA方法定量检测转基因大豆及其产品的研究[J].食品与发酵工业, 2007, 33 (11) :103-106.
    [58]

    Kim HJ, Lee SM, Kim JK, et al.Expression of PAT and NPTII proteins during the developmental stages of a genetically modified pepper developed in Korea[J].J Agric Food Chem, 2010, 58 (20) :10906-10910.

    [59]

    Kamle S, Ojha A, Kumar A.Development of enzyme-linked immunosorbent assay for the detection of Bt protein in transgenic cotton[J].Method Mol Boil, 2013, 958:131-138.

    [60] 王新桐, 孙佳芝, 高丽丽, 等.转基因棉花中新霉素磷酸转移酶 (NPTⅡ) 双抗体夹心ELISA定量检测方法的建立[J].农业生物技术学报, 2014, 22 (3) :372-379.
    [61] 龚宏伟.转基因农产品检测前沿技术及应用[J].甘肃农业, 2010 (12) :34-35.
    [62] 厉建萌, 宋桂文, 刘信, 等.浅谈转基因产品阈值管理[J].农业科技管理, 2009, 28 (3) :29-32.
    [63] 柴晓芳, 赵宏伟, 肖长文.浅析转基因作物检测技术研究进展[J].种子世界, 2012 (11) :15-17.
    [64] 林清, 彭于发, 吴红, 等.转基因作物及产品检测技术研究进展[J].西南农业学报, 2009, 22 (2) :513-517.
    [65] 张莹, 张永军, 吴孔明, 等.转基因植物的检测策略和检测技术[J].植物保护, 2007, 33 (1) :11-14.
    [66]

    Holst-Jensen A.Testing for genetically modified organisms (GMOs) :Past, present and future perspectives[J].Biotechnol Adv, 2009, 27:1071-1082.

    [67]

    Querci M, Van den Bulcke M, Zel J, et al.New approaches in GMO detection[J].Anal Bioanal Chem, 2010, 396:1991-2002.

    [68]

    Michelini E, Simoni P, Cevenini L, et al.New trends in bioanalytical tools for thedetection of genetically modified organisms:an update[J].Anal Bioanal Chem, 2008, 392:355-367.

    [69] 王广印, 范文秀, 陈碧华, 等.转基因食品检测技术的应用与发展Ⅰ.主要检测技术及其特点[J].食品科学, 2008, 29 (10) :698-705.
    [70]

    Michelini E, Simoni P, Cevenini L, et al.New trends in bioanalytical tools for the detection of geneticallymodified organisms:an update[J].Anal Bioanal Chem, 2008, 392:355-367.

    [71]

    Elenis DS, Kalogianni DP, Glynou K, Ioannou PC, Christopoulos TK.Advances in molecular techniques for the detection and quantification of genetically modified organisms[J].Anal Bioanal Chem, 2008, 392:347-354.

    [72]

    Cankar K, Stebih D, Dreo T, et al.Critical points of DNAquantification by Real-time PCR-effects of DNA extraction method and sample matrix on quantification of genetically modified organisms[J].BMC Biotechnology, 2006, 6 (1) :37.

    [73]

    Emons H.GMO analysis-a complex and challenging undertaking[J].Anal Bioanal Chem, 2010, 396:1949-1950.

    [74]

    Perkel JM.The Digital PCR Revolution.Science[J].Science, 2014, 344 (6180) :212-214.

    [75]

    Corbisier P, Bhat S, Partis L, et al.Absolute quantification of genetically modified MON8IO maize (Zea mays L) by digital polymerase chain reaction[J].Anal Bioanal Chem, 2009, 10:3200-3207.

    [76]

    Rebecca S, Jim FH, Claire AB, et al.Evaluation of digital PCR for absolute DNA quantification[J].Anal Chem, 2011, 10:1021.

    [77]

    Lun F M, Chiu R W, Chan K C, et al.Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma[J].Clin Chem, 2008, 54:1664-1672.

    [78]

    Qin J, Jones R C, Ramakrishnan R.Studying copy number variations using a nanofluidic platform[J].Nucleic Acids Res, 2008, 26.

    [79]

    Whale A S, Cowen S, Foy C A, et al.Methods for applying accurate digital PCR analysis on low copy DNA samples[J].PLo SOne, 2013, 8 (3) :1-10.

    [80]

    Demeke T, Grfenhan T, Holigroski M, et al.Assessment of droplet digital PCR for absolute quantification of genetically engineered OXY235 canola and DP305423 soybean samples[J].Food Control, 2014, 46:470-474.

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-17

目录

    /

    返回文章
    返回