Optimization and kinetics analyses of exopolysaccharide production by Simplicillium lanosoniveum
-
摘要: Simplicillium lanosoniveum(DT06)是一种能够合成特殊胞外多糖的半知菌类真菌。本文以真菌DT06为研究材料,采用BBD设计原则的响应面法优化其胞外多糖的合成工艺条件,并对其发酵动力学参数进行分析。在单因素实验的基础上,以胞外多糖得率为响应值,确定多糖合成的最优条件:初始p H4.87,葡萄糖40.65 g/L,蛋白胨10.38 g/L,温度30℃,转速140 r/min。优化后真菌DT06胞外多糖得率可达0.139 g/g,比优化前提高了32%。在此优化条件下,对DT06的发酵过程进行动力学分析,结果表明:DT06最大比生长速率μmax=0.156 h-1,其多糖合成与菌体生长部分偶联。与其它产多糖的真菌相比,DT06合成多糖的最大比合成速率较高达到0.066 h-1,但总的多糖得率却较低。碳平衡计算发现DT06还产生一种未知的中性含碳产物,其碳得率为0.129 g/g。上述实验为DT06多糖发酵过程的调控及其胞内代谢网络的优化提供了依据。Abstract: The optimum synthesis conditions and fermentation kinetic parameters of Simplicillium lanosoniveum DT06 which was a Deuteromycetes fungus being capable of producing unique exopolysaccharide( EPS) was researched. Based on single factor experiment,the optimum culture conditions for EPS yield coefficient were determined applying Box- Behnken design( BBD). Under the optimized conditions( 40.65 g / L glucose,10.38 g / L peptone,p H4.87,temperature 30 ℃ and rotation speed 140 r / min),the highest EPS yield coefficient 0.139 g / g was obtained,which increased 32% compared with that before optimization. Kinetics analyses indicate that the maximum specific growth rate( μmax) of DT06 was 0.156 h- 1,while its EPS synthesis was semi-growth-associated with a maximum specific production rate 0.066 h- 1,which was relative higher than those of other EPS-producing Fungi. Nevertheless its average EPS yield coefficient was relative low.Carbon- balance analysis revealed that apart from EPS DT06 also produced a unknown products with a carbon yield coefficient of 0.129 g / g. These results provided essential parameters for controlling DT06's fermentation process and improving its metabolic network.
-
Keywords:
- exopolysaccharide /
- fungus /
- RSM /
- fermentation Kinetic /
- carbon-balance
-
[1] 何建玲,杨双双,黄金田,等.响应面分析优化假单胞菌产絮凝剂的培养条件[J].食品工业科技,2015,36(16):183-192. [2] Farina J I,Vinarta S C,Cattaneo M,et al.Structural stability of Sclerotium rolfsii ATCC 201126 beta-glucan with fermentation time:a chemical,infrared spectroscopic and enzymatic approach[J].Journal of Applied Microbiology,2009,106(1):221-232.
[3] Bulmer M A,Catley B J,Kelly P J.The effect of ammonium ions and p H on the elaboration of the fungal extracellular polysaccharide,pullulan,by Aureobasidium pullulans[J].Applied Microbiology and Biotechnology,1987,25(4):362-365.
[4] Wang C Y,Mao W J,Chen Z Q,et al.Purification,structural characterization and antioxidant property of an extracellular polysaccharide from Aspergillus terreus[J].Process Biochemistry,2013,48(9):1395-1401.
[5] Chen Y,Mao W J,Tao H W,et al.Structural characterization and antioxidant properties of an exopolysaccharide produced by the mangrove endophytic fungus Aspergillus sp Y16[J].Bioresource Technology,2011,102(17):8179-8184.
[6] Stasinopoulos S J,Seviour R J.Exopolysaccharide production by Acremonium persicinum in stirred-tank and air-lift fermentors[J].Applied Microbiology and Biotechnology,1992,36(4):465-468.
[7] Ward N A,Robertaon C L,Chanda A K.Effects of Simplicillium lanosoniveum on Phakopsora pachyrhizi,the Soybean Rust Pathogen,and Its Use as a Biological Control Agent[J].Phytopathology,2012,120(8):749-760.
[8] 余永涛,何生虎,赵清梅.宁夏苦豆子中产苦参碱内生真菌的分离与鉴定[J].中国农业科学,2013,46(13):2643-2654. [9] Zhou H B,Bi P Y,Wu X G.Improved Polysaccharide Production in Submerged Culture of Ganoderma lucidum by the Addition of Coixenolide[J].Applied Biochemical and Biotechnology,2014,172:1497-1505.
[10] 董庆霖,陈博,邢向英,等.一株蓝藻内生真菌的鉴定及其产物抑菌活性[J].化工学报,2011,62(6):1655-1661. [11] Dong Q L,Lin T Y,Xing X Y.Identification of a symbioticfungus from blue-green alga and its extracellular polysaccharide[J].Letters in Applied Microbiology,2014,58(4):303-310.
[12] Miller G L.Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical and Bioanalytical Chemistry,1959,31(3):426-428.
[13] Desmond P F A,Robert J S.Influence of varying nitrogen sources on polysaccharide production by Aureobasidium pullulans in batch culture[J].Applied Microbiology and Biotechnology,1990,32(6):637-644.
[14] Dziasmis S,Dana H,Jaromir K,et al.Cryptococcus laurentii Extracellular Biopolymer Production for Application in Wound Management[J].Applied Biochemistry and Biotechnology,2014,174(4):1344-1353.
[15] Lee H W,Pan J G,Lebeault J M.Characterisation of kinetic parameters and metabolic transition of Corynebacterium glutamicum on l-lysine production in continuous culture[J].Applied Microbiology and Biotechnology,1995,43(6):1019-1027.
[16] Klimek J,Ollis D F.Extracellular microbial polysaccharides:Kinetics of Pseudomonas sp.,Azotobacter vinelandii,and Aureobasidium pullulans batch fermentations[J].Biotechnology and Bioengineering,1980,22(11):2321-2342.
[17] 武秋立,安家彦.羊肚菌胞外多糖发酵动力学模型[J].南开大学学报,2005,38(1):43-48. [18] Gibbs P A,Seviour R J.Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture?[J].Applied Microbiology and Biotechnology,1996,46:503-510.
[19] Mohammad F H A,Badr E M,Tayeb M E.Polysaccharide production by Aureobasidium Pullulans III.The influence of intial sucrose concentration on batch kinetics[J].Biomass and Bioenergy,1995,8(2):121-129.
[20] 康建雄,孟少魁,吴磊.生物絮凝剂普鲁兰的发酵动力学模型研究[J].哈尔滨工业大学学报,2005,37(10):1370-1372. [21] Ma Z C,Fu W J,Liu G L,et al.High-level pullulan production by Aureobasidium pullulans var.melanogenium P16isolated from mangrove system[J].Applied Microbiology and Biotechnolog,2014,98:4865-4873.
[22] 张建国,陈晓明,贺新生.灵芝胞外多糖分批发酵动力学模型[J].生物工程学报,2007,23(6):1065-1070. [23] Nielsen J,Villadsen J,Liden G.Bioreaction Engineering Principles,second edition[M].Beijing:Chemical Industry Press,2004.
[24] Van Aalstt-Van Leeuwen M A,Pot M A,Van Loosdrecht M,et al.Kinetic Modeling of Poly(b-hydroxybutyrate)Production and Consumption by Paracoccus pantotrophus under Dynamic Substrate Supply[J].Biotechnology and Bioengineering,1997.(5):773-782.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: