• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

重金属检测荧光传感技术的研究进展

冷玲, 李壹, 熊晓辉

冷玲, 李壹, 熊晓辉. 重金属检测荧光传感技术的研究进展[J]. 食品工业科技, 2016, (15): 380-384. DOI: 10.13386/j.issn1002-0306.2016.15.066
引用本文: 冷玲, 李壹, 熊晓辉. 重金属检测荧光传感技术的研究进展[J]. 食品工业科技, 2016, (15): 380-384. DOI: 10.13386/j.issn1002-0306.2016.15.066
LENG Ling, LI Yi, XIONG Xiao-hui. Study on fluorescent chemosensors for heavy metal ions[J]. Science and Technology of Food Industry, 2016, (15): 380-384. DOI: 10.13386/j.issn1002-0306.2016.15.066
Citation: LENG Ling, LI Yi, XIONG Xiao-hui. Study on fluorescent chemosensors for heavy metal ions[J]. Science and Technology of Food Industry, 2016, (15): 380-384. DOI: 10.13386/j.issn1002-0306.2016.15.066

重金属检测荧光传感技术的研究进展

基金项目: 

“十二五”农村领域国家科技计划(2013BAD19B09); 江苏省科技基础设施建设计划(BM2012026);

详细信息
    作者简介:

    冷玲(1992-),女,硕士研究生,研究方向:食品安全,E-mail:learning92@163.com。;

    熊晓辉(1964-),男,博士,教授,研究方向:食品安全,E-mail:xxh@njtech.edu.cn。;

  • 中图分类号: O657.3;TP212

Study on fluorescent chemosensors for heavy metal ions

  • 摘要: 重金属离子是一类极具生理毒性的化学物质,其检测方法在化学传感领域引起了人们广泛的关注,而食品中重金属离子的检测也愈发重要。荧光探针因具有组织穿透性、低背景荧光干扰、高效灵敏和检测实时便捷等特点,成为重金属检测的重要手段之一。文中综述了近年来主要重金属离子检测荧光探针(香豆素类,罗丹明类、喹啉类和比率型)的研究进展,重点分析荧光探针的设计原理,检测机制及其结构与化学传感的关系,为荧光探针识别重金属的应用提供指导。最后展望了荧光探针在食品检测、环境监测和生物成像等领域的发展趋势和应用前景。 
    Abstract: As a great toxic chemical substance in physiology,heavy metal ions in food causes severe healthy problems and the detection methods of them have aroused widespread concern,especially in sensing area.Owing to their unique advantages,such as tissue penetration,minimum interference from background auto- fluorescence and efficient detection,fluorescent chemosensors have been one of the most important sensing methods for heavy metals. The advances in the progress of fluorescent chemosensors including coumarin,rhodamine analogue,quinoline and radiometric chemosensors were reviewed in this paper. The design principles of chemosensors,as well as sensing mechanisms and the relationship between structure and chemical sensing were analyzed,which provided guidance for fluorescent chemosensors to identify the heavy metals.Finally,in the aspect of food testing,environmental monitoring and biological imaging,the development and prospect of fluorescent chemosensors were addressed to our understanding.
  • [1]

    Samuel K,Montserrat S,Cristal F G,et al.New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications[J].Science of the Total Environment,2013,442(1):329-335.

    [2]

    Dommergue A,Ferrari C P.Influence of anthropogenic sources on total gaseous mercury variability in Grenoble suburban air(France).[J].Science of the Total Environment,2002,297(1-3):203-213.

    [3]

    Jalal I,Ahmida E A.A water soluble fluorescent BODIPY dye with azathia-crown ether functionality for mercury chemosensing in environmental media[J].Analyst,2013,138(13):3809-3819.

    [4]

    Elizabeth M,Nolan,Stephen J,Lippard.Tools and tactics for the optical detection of mercuric ion[J].Chemical Reviews,2008,108(9):3443-3480.

    [5]

    Meng L,Haobo G,Arrowsmith R L,et al.Ditopic boronic acid and imine-based naphthalimide fluorescence sensor for copper(II)[J].Chemical Communications,2014,50(80):11806-11809.

    [6]

    Hahn S H,Tanner M S,Danke D M,et al.Normal Metallothionein Synthesis in Fibroblasts Obtained from Children with Indian Childhood Cirrhosis or Copper-Associated Childhood Cirrhosis[J].Biochemical&Molecular Medicine,1995,54(54):142-145.

    [7]

    Brown D R.Copper and prion disease[J].Brain Research Bulletin,2001,55(2):165-173.

    [8]

    Valentine J S,Hart P J.Misfolded Cu Zn SOD and amyotrophic lateral sclerosis[J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(7):3617-3622.

    [9]

    D J Waggoner,T B Bartnikas,J D Gitlin.The role of copper in neurodegenerative disease[J].Neurobiology of Disease,1999,6(4):221-230.

    [10]

    Zhang Z,Lu S,Sha C,et al.A single thiourea-appended 1,8-naphthalimide chemosensor for three heavy metal ions:Fe3+,Pb2+,and Hg2+[J].Sensors&Actuators B Chemical,2015,208:258-266.

    [11]

    Meng Z,Lei G,Ge S,et al.Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+and Hg2+based on potential-control technique[J].Biosensors&Bioelectronics,2012,41(6):544-550.

    [12]

    Zhang Y,Adeloju S B.Speciation of mercury in fish samples by flow injection catalytic cold vapour atomic absorption spectrometry[J].Analytica Chimica Acta,2012,721(7):22-27.

    [13]

    Moreno F,García-Barrera T,Gómez-Ariza J L.Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS[J].Analyst,2010,135(10):2700-2705.

    [14]

    Moreda A.Evaluation of commercial C18 cartridges for trace elements solid phase extraction from seawater followed by inductively coupled plasma-optical emission spectrometry determination[J].Analytica Chimica Acta,2005,536(1):213-218.

    [15]

    Andria S E,Seliskar C J,Heineman W R.Simultaneous detection of two analytes using a spectroelectrochemical sensor.[J].Analytical Chemistry,2010,82(5):1720-1726.

    [16]

    Liang Z Q,Wang C X,Yang J X,et al.A highly selective colorimetric chemosensor for detecting the respective amounts of iron(II)and iron(III)ions in water[J].New Journal of Chemistry,2007,31(6):906-910.

    [17]

    Bin-Cheng Y,Bang-Ce Y,Weihong T,et al.An Allosteric Dual-DNAzyme Unimolecular Probe for Colorimetric Detection of Copper(II)[J].Journal of the American Chemical Society,2009,131(41):14624-14625.

    [18]

    Wrobel A T,Johnstone T C,Deliz L A,et al.A Fast and Selective Near-Infrared Fluorescent Sensor for Multicolor Imaging of Biological Nitroxyl(HNO)[J].Journal of the American Chemical Society,2014,136(12):4697-4705.

    [19]

    Formica M,Fusi V,Giorgi L,et al.New fluorescent chemosensors for metal ions in solution[J].Coordination Chemistry Reviews,2012,256(s 1-2):170-192.

    [20]

    Xu Y,Jiang Z,Xiao Y,et al.A new fluorescent turn-on chemodosimeter for mercury ions in solution and its application in cells and organisms[J].Analytica Chimica Acta,2014,807:126-134.

    [21]

    Yeh J T,Chen W C,Liu S R,et al.A coumarin-based sensitive and selective fluorescent sensor for copper(II)ions[J].New Journal of Chemistry,2014,38(9):4434-4439.

    [21]

    Yu S Y,Wu S P.A highly selective turn-on fluorescence chemosensor for Hg(II)and its application in living cell imaging[J].Sensors&Actuators B Chemical,2014,201(4):25-30.

    [23]

    TomáP,Peter S,Ji Ina M,et al.Near-Infrared Fluorescent9-Phenylethynylpyronin Analogues for Bioimaging[J].Journal of Organic Chemistry,2014,79(8):3374-3382.

    [24]

    Yang Y K,Cho H J,Lee J,et al.A Rhodamine-Hydroxamic Acid-Based Fluorescent Probe for Hypochlorous Acid and Its Applications to Biological Imagings[J].Organic Letters,2009,11(4):859-861.

    [25]

    Zhang L,Wang J,Fan J,et al.A highly selective,fluorescent chemosensor for bioimaging of Fe3+[J].Bioorganic&Medicinal Chemistry Letters,2011,21(18):5413-5416.

    [26]

    Wang F H,Cheng C W,Duan L C,et al.Highly selective fluorescent sensor for Hg2+ion based on a novel rhodamine B derivative[J].Sensors&Actuators B Chemical,2015,206:679-683.

    [27]

    Jong Woo Jeong,Boddu Ananda Rao,Young-A Son.Rhodamine-chloronicotinaldehyde-based“OFF-ON”chemosensor for the colorimetric and fluorescent determination of Al3+ions[J].Sensors&Actuators B Chemical,2015,208(208):75-84.

    [28]

    Zhang Y,Zeng X,Mu L,et al.Rhodamine-triazine based chemosensors for Cu2+in aqueous media and living cells[J].Sensors&Actuators B Chemical,2014,204:24-30.

    [29]

    Sarkar D,Pramanik A,Jana S,et al.Quinoline based reversible fluorescent‘turn-on’chemosensor for the selective detection of Zn2+:Application in living cell imaging and as INHIBIT logic gate[J].Sensors&Actuators B Chemical,2015,209:138-146.

    [30]

    Basa P N,Sykes A G.Differential sensing of Zn(II)and Cu(II)via two independent mechanisms[J].Journal of Organic Chemistry,2012,77(19):8428-8434.

    [31]

    Li P,Zhou X,Huang R,et al.A highly fluorescent chemosensor for Zn2+and the recognition research on distinguishing Zn2+from Cd2+[J].Dalton Trans,2013,43(2):706-713.

    [32]

    Kawanishi Y,Kikuchi K,Takakusa H,et al.Design and Synthesis of Intramolecular Resonance-Energy Transfer Chemosensors for Use in Ratiometric Measurements in Aqueous Solution[J].Angewandte Chemie International Edition,2000,39(19):3438-3440.

    [33]

    Carolyn C,Woodroofe,Stephen J,Lippard.A novel twofluorophore approach to ratiometric sensing of Zn2+[J].Journal of the American Chemical Society,2003,125(38):11458-11459.

    [34]

    Liu K,Zhou Y,Yao C.A highly sensitive and selective ratiometric and colorimetric sensor for Hg2+based on a rhodamine-nitrobenzoxadiazole conjugate[J].Inorganic Chemistry Communications,2011,14(11):1798-1801.

    [35]

    Zhaochao X,Kyung-Hwa B,Ha Na K,et al.Zn2+-triggered amide tautomerization produces a highly Zn2+-selective,cellpermeable,and ratiometric fluorescent sensor[J].Journal of the American Chemical Society,2010,132(132):601-610.

    [36]

    Zhu B,Gao C,Zhao Y,et al.A 4-hydroxynaphthalimidederived ratiometric fluorescent chemodosimeter for imaging palladium in living cells[J].Chemical Communications,2011,47(30):8656-8658.

    [37]

    Chun-Yan L,Xiao-Bing Z,Li Q,et al.Naphthalimideporphyrin hybrid based ratiometric bioimaging probe for Hg2+:well-resolved emission spectra and unique specificity[J].Analytical Chemistry,2009,81(24):9993-10001.

    [38]

    Carolyn C,Woodroofe,Stephen J,Lippard.A novel twofluorophore approach to ratiometric sensing of Zn2+[J].Journal of the American Chemical Society,2003,125(38):11458-11459.

    [39]

    Yuan L,Lin W,Zheng K,et al.FRET-based smallmolecule fluorescent chemosensors:rational design and bioimaging applications[J].Accounts of Chemical Research,2013,46(7):1462-1473.

    [40]

    Zhang Y,Guo X,Tian X,et al.Carboxamidoquinolinecoumarin derivative:A ratiometric fluorescent sensor for Cu(II)in a dual fluorophore hybrid[J].Sensors&Actuators B Chemical,2015,218:37-41.

    [41]

    Gong Y J,Zhang X B,Zhang C C,et al.Through bond energy transfer:a convenient and universal strategy toward efficient ratiometric fluorescent probe for bioimaging applications[J].Analytical Chemistry,2012,84(24):10777-10784.

    [42]

    Shiguo Sun,Bo Qiao,Na Jiang,et al.Naphthylaminerhodamine-based ratiometric fluorescent probe for the determination of Pd2+ions[J].Organic Letters,2014,16(4):1132-1135.

    [43]

    Zhou X,Yan W,Zhao T,et al.Rhodamine based derivative and its zinc complex:synthesis and recognition behavior toward Hg(II)[J].Tetrahedron,2013,69(46):9535-9539.

    [44]

    Bradley M,Alexander L,Duncan K,et al.p H sensing in living cells using fluorescent microspheres[J].Bioorganic&Medicinal Chemistry Letters,2008,18(1):313-317.

    [45]

    Hashemi P,Zarjani R A.A wide range p H optical sensor with mixture of Neutral Red and Thionin immobilized on an agarose film coated glass slide[J].Sensors&Actuators B Chemical,2008,135(1):112-115.

    [46]

    Wang J Q,Huang L,Xue M,et al.Architecture of a Hybrid Mesoporous Chemosensor for Fe3+by Covalent Coupling BisSchiff Base PMBA onto the CPTES-Functionalized SBA-15[J].Journal of Physical Chemistry C,2008,112(13):5014-5022.

    [47]

    Uttamlal Mahesh,Sloan William D,Millar David.Covalent immobilization of fluorescent indicators in photo and electropolymers for the preparation of fibreoptic chemical sensors[J].Polymer International,2002,51(11):1198-1206.

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-15

目录

    /

    返回文章
    返回