Genome shuffling and its application in fungal-breeding
-
摘要: 基因组重排(genome shuffling)是一种快速提高细胞表型的新颖的全基因组工程方法,它是基于多亲本的原生质体递归融合,提供了在缺少基因组序列数据或网络信息情况下的全基因组重组的优势。文中介绍了基因组重排的原理、优点及过程,概述了基因组重排在真菌育种中的应用,并展望了该技术的前景。Abstract: The technology of genome shuffling was a novel whole genome engineering approach for the rapid improvement of cellular phenotypes. Based on the recursive protoplast fusion with multi-parental strains, it offers the advantage of recombination throughout the entire genome without the necessity for genome sequence data or network information. This article introduced the principle, characteristics and process of genome shuffling, summarized its application in fungal-breeding and prospected the outlook of it.
-
Keywords:
- genome shuffling /
- recursive protoplast fusion /
- fungal-breeding
-
[1] 赵超敏, 车振明.工业有益微生物育种技术的研究进展[J].食品研究与开发, 2008, 29 (2) :172-174. [2] 谭琦, 潘迎捷, 黄为一.中国香菇育种的发展历程[J].食用菌学报, 2000, 7 (4) :48-52. [3] 李荣杰.微生物诱变育种方法研究进展[J].河北农业科学, 2009, 13 (10) :73-76, 78. [4] 吴帅, 陈叶福, 沈楠, 等.高耐性酿酒酵母的杂交育种[J].酿酒科技, 2006 (10) :20-26. [5] 宋春艳, 刘德云, 尚晓冬, 等.香菇杂交新品种“申香16号”的选育及示范推广[J].食用菌学报, 2010, 17 (4) :11-14. [6] 赵姝娴, 林俊芳, 王杰, 等.安全选择标记的转基因食用菌研究进展[J].食用菌学报, 2007, 14 (1) :55-61. [7] Zhang YX, Perry K, Vinci VA, et al.Genome shuffling leads to rapid phenotypic improvement in bacteria[J].Nature, 2002, 415:644-646.
[8] Patnaik R, Louie S, Gavrilovic V, et al.Genome shuffling of Lactobacillus for improved acid tolerance[J].Nature Biotechnology, 2002, 20:707-712.
[9] Stephanopoulos G.Metabolic engineering by genome shuffling[J].Nature Biotechnology, 2002, 20:666-668.
[10] Petri R, Schmidt DC.Dealing with complexity:evolutionary engineering and genome shuffling[J].Current Opinion in Biotechnology, 2004 (4) :298-304.
[11] 刘源慧.应用基因组改组技术选育真菌α-淀粉酶高产菌株[D].福州:福建师范大学, 2011. [12] Gong GL, Wang CL, Chen MH, et al.Genome shuffling to improve the ethanol production of Saccaromyce scerevisiae[J].Abstracts/Journal of Biotechnology, 2008 (136S) :S290-S344.
[13] Zhao M, Dai CC, Guan XY, et al.Genome shuffling amplifies the carbon source spectrum and improves aracidonic acid production in Diasporangium sp.[J].Enzyme and Microbial Technology, 2009 (45) :419-425.
[14] 李洁, 王刚, 张利平.产番茄红素红酵母基因组重排实验条件的优化[J].食品工业科技, 2013, 34 (8) :228-231. [15] 李灿明, 黄时海, 张云开.灭活原生质体融合技术提高豆鼓纤溶酶菌产酶量[J].食品工业科技, 2009, 30 (8) :140-142. [16] 常登龙, 洪玉, 杨永军.同种接合型酵母菌株Y2HGold的原生质体融合研究[J].食品工业科技, 2012, 33 (12) :233-238. [17] Gong JX, Zhao XM, Xing QR, et al.Femtosecond laserinduced cell fusion[J].Applied Physics Letters, 2008, 92 (9) :093901/1-093901/3.
[18] Skelley AM, Kirak O, Suh H, et al.Microfluidic control of cell pairing and fusion[J].Nature Methods, 2009, 6 (2) :147-152.
[19] 翁艳军, 赵作棋, 徐建国, 等.青霉素产生菌的原生质体融合[J].中国抗生素杂志, 2003, 28 (3) :129-130. [20] Kang JX, Chen XJ, Chen WR, et al.Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling[J].Process Biochemistry, 2011, 46:792-795.
[21] El-Bondkly AMA.Molecular identification using ITS sequences and genome shuffling to improve 2-deoxyglucosetolerance and xylanase activity of marine-derived fungus, Aspergillus Sp.NRCF5[J].Applied Biochemistry and Biotechnology, 2012, 167:2160-2173.
[22] Wei PY, Li ZL, He P, et al.Genome shuffling in the ethanologenic yeast Candida krusei to improve acetic acid tolerance[J].Biotechnology and Applied Biochemistry, 2008, 49:113-120.
[23] Shi DJ, Wang CL, Wang KM.Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae[J].Journal of Industrial Microbiology&Biotechnology, 2009, 36:139-147.
[24] Paramjit KB, Pinel D, Martin VJJ, et al.Strain improvement of the pentose-fermenting yeast Pichia stipitis by genome shuffling[J].Journal of Microbiological Methods, 2010, 81:179-186.
[25] 李科, 甘明哲, 付洁.利用木糖产乙醇的真菌筛选及发酵条件优化[J].太阳能学报, 2010, 31 (9) :1117-1122. [26] 石文卿, 陶能国, 刘跃进, 等.一株高产纤维素酶真菌的分离及产酶特性研究[J].环境工程学报, 2011, 5 (6) :1435-1440. [27] 肖建辉, 蒋侬辉, 梁宗琦, 等.食药用真菌多糖研究进展[J].生命的化学, 2002, 22 (2) :148-151. [28] Zhao K, Ping WX, Zhang LN, et al.Screening and breeding of high taxol producing fungi by genome shuffling[J].Science in China Series C:Life Sciences, 2008, 51 (3) :222-231.
[29] 冯印.基因组改组构建高产茁霉多糖菌株研究[D].长春:吉林农业大学, 2011. [30] 程艳飞.基因组重排在产纤维素酶斜卧青霉菌种改造中的应用[D].济南:山东大学, 2009. [31] 何小妮, 陈子健, 蒋波, 等.高产果糖基转移酶米曲霉菌株的选育[J].食品工业科技, 2013, 34 (22) :135-140. [32] 李立风, 潘力, 彭昶, 等.基因组改组:几株同源酱油曲霉的多亲株电融合育种[J].中国调味品, 2006 (7) :14-18. [33] 张志国.基因组改组选育米曲霉α-淀粉酶高产菌株[D].福州:福建师范大学, 2009. [34] 董计巧.离子注入和基因组重排提高青霉产纤维素酶能力及应用效果研究[D].济南:山东大学, 2011. [35] 林竣, 施碧红.基因组改组技术快速提高扩展青霉碱性脂肪酶产量[J].生物工程学报, 2007, 23 (4) :672-676. [36] 潘力, 梁燕嫦, 苗小康, 等.基于基因组改组的米曲霉沪酿3.042多亲株PEG介导融合育种[J].中国酿造, 2008 (23) :70-73. [37] 黄年来, 林志彬, 陈国良, 等.中国食药用菌学[M].上海:上海科学技术文献出版社, 2010:10-14.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: