Study on preparation of soluble dietary fiber by enzymatic method from kiwifruit and its antioxidant activity
-
摘要: 以猕猴桃皮渣为原料,采用酶法制备猕猴桃可溶性膳食纤维。在单因素实验的基础上,以纤维素酶添加量、酶解时间、酶解温度和液料比为实验因素,以可溶性膳食纤维提取率为响应值,采用四因素五水平的响应面分析法进行实验,优化提取工艺参数。同时,考察了猕猴桃可溶性膳食纤维对DPPH和ABTS+自由基的清除效果及其还原能力。结果表明,酶法制备猕猴桃可溶性膳食纤维的最佳工艺条件为:酶添加量0.86%、酶解时间2.5h、酶解温度62℃和液料比27∶1(mL/g),在该条件下猕猴桃可溶性膳食纤维提取率预测值为13.379%,验证值为12.983%,响应面法对猕猴桃可溶性膳食纤维提取条件的优化是可行的,可用于实际预测。抗氧化活性实验表明猕猴桃可溶性膳食纤维具有较强的自由基清除效果和还原能力,对DPPH和ABTS+自由基的EC50分别为4.68mg/mL和1.28mg/mL。Abstract: The enzymatic method was adopted to extract soluble dietary fiber from the skin residue of kiwifruit.On the basis of one factor test, the method of response surface analysis with 4 factors including the amount of cellulose, extract time, extract temperature and liquid-to-solid ratio on the extraction ratio of soluble dietary fiber was adopted. Meanwhile, the antioxidant activity of the soluble dietary fiber was tested. The result showed that, these optimal extraction conditions were as follows :the amount of cellulose 0.86%, extract time 2.5h, extract temperature 62℃ and the liquid-to-solid ratio 27∶1mL/g, the predicted value and measured value of the soluble dietary fiber were 13.379% and 12.983%, respectively. Results indicated that the obtained mode developed by response surface methodology was feasible for practical prediction. The antioxidant activity test showed that, the soluble dietary fiber from kiwifruit had strong radical scavenging activity and reducing capacity, the EC50 of DPPH and ABTS were 4.68mg/mL and 1.28mg/mL, respectively.
-
[1] 杨艳杰, 白新鹏, 裘爱泳.猕猴桃属植物的研究进展[J].安徽农业科学, 2007, 35 (35) :11454-11457. [2] 李军德.红阳猕猴桃[J].湖北林业科技, 2003 (4) :29. [3] Tavarini S, Degl’lnnocenti D, Remorini D, et al.Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest ad after storage of Hayward kiwifruit[J].Food Chemistry, 2008, 107:282-288.
[4] 崔莹.猕猴桃属植物化学成分及药理活性研究进展[J].西安文理学院学报:自然科学版, 2011, 14 (4) :21-25. [5] Motohashi N, Shirataki Y, Kawase M, et al.Biological activity of kiwifruit peel extracts[J].Phytotheraphy Research, 2001, 15 (4) :337-343.
[6] 韩俊娟, 木泰华, 张柏林.膳食纤维生理功能的研究现状[J].食品科技, 2008 (6) :243-245. [7] 郑建仙.功能性食品:第1卷[M].北京:中国轻工业出版社, 1995:13-16. [8] 李加兴, 刘飞, 范芳利, 等.响应面法优化猕猴桃皮渣可溶性膳食纤维提取工艺[J].食品科学, 2009, 30 (14) :143-148. [9] 潘曼, 钟海雁, 李忠海, 等.酶法制备猕猴桃渣膳食纤维工艺研究[J].经济林研究, 2009, 27 (1) :29-33. [10] 刘林林, 吴茂玉, 葛帮国, 等.采用响应面法对酶法提取香蕉皮可溶性膳食纤维工艺的优化[J].农产品加工·学刊, 2013 (3) :5-9. [11] Sun Ting, Ho CT.Antioxidant activities of buckwheat extracts[J].Food Chemistry, 2005, 90:743-749.
[12] ST魪PHANIE DUDONN魪, XAVIER VITRAC, PHILIPPE COUTI魬RE, et al.Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC sssays[J].J Agric Food Chem, 2009, 57:1768-1774. [13] Fang ZX, Zhang YH, Yuan L譈, et al.Phenolic compounds and antioxidant capacities of bayberry juices[J].Food Chemistry, 2009, 113:884-888. [14] 杨念, 芮汉明.金针菇提取物的提取工艺优化及其抗氧化性能研究[J].食品与发酵工业, 2011, 37 (1) :194-198. [15] 何余堂, 高虹妮, 解玉梅, 等.超声波协同酶法制备杏仁皮中水溶性膳食纤维及理化研究[J].食品工业科技, 2013, 34 (1) :229-232. [16] 洪华荣.胡萝卜渣膳食纤维提取工艺及其功能性研究[D].福州:福建医科大学, 2007. [17] Wang Jing, Sun B G, Gao Y P, et al.Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran[J].Food Chemistry, 2008, 106 (2) :804-810.
[18] Shon M Y, Kim T H, Sung N J.Antioxidants and free radical scavenging activity of Phellinus baumii (Phellinus of Hymenochactaceae) extracts[J].Food Chemistry, 2003, 82:593-597.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: