• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

微生物发酵法制备结冷胶的研究进展

微生物发酵法制备结冷胶的研究进展[J]. 食品工业科技, 2013, (10): 395-399. DOI: 10.13386/j.issn1002-0306.2013.10.025
引用本文: 微生物发酵法制备结冷胶的研究进展[J]. 食品工业科技, 2013, (10): 395-399. DOI: 10.13386/j.issn1002-0306.2013.10.025
Research progress in productions of gellan gum by fermentation of microorganism[J]. Science and Technology of Food Industry, 2013, (10): 395-399. DOI: 10.13386/j.issn1002-0306.2013.10.025
Citation: Research progress in productions of gellan gum by fermentation of microorganism[J]. Science and Technology of Food Industry, 2013, (10): 395-399. DOI: 10.13386/j.issn1002-0306.2013.10.025

微生物发酵法制备结冷胶的研究进展

基金项目: 

国家自然科学基金项目(31000762,31271940); 广东省对外科技合作项目(2011B050300014);

详细信息
  • 中图分类号: TQ920.6

Research progress in productions of gellan gum by fermentation of microorganism

  • 摘要: 目前,微生物发酵法是结冷胶生产的最佳方法。结冷胶的生物合成途径包括胞内糖活化前体的合成、四糖重复单元的合成、重复单元的移位、聚合及结冷胶分泌到膜外等过程。UDP-葡萄糖焦磷酸化酶、TDP-葡萄糖焦磷酸化酶、UDP-葡萄糖脱氢酶等是结冷胶合成的关键酶。生产结冷胶的菌种可以通过诱变、基因重组和支路基因敲除等方法获得。最佳的碳源、氮源及C/N、最适的发酵温度及溶氧控制、发酵动力学模型建立及响应面实验设计方法等新技术方法逐渐应用于结冷胶的生产。本文对结冷胶的生物合成代谢途径及重要酶的研究进展进行了综述,并对近年来构建结冷胶产生菌的研究及发酵工业进行了总结,展望了未来构建结冷胶基因工程菌的研究方向。 
    Abstract: Gellan is used in the food, pharmaceutical and industries and produced by Sphingomonas paucimobilis. Fermentation is the optimal production of gellan gum.The gellan biosynthetic pathway consists of three sequential steps:intracellular synthesis of sugar-activated precursors, assembly of the tetrasaccharide repeat units linked to the inner membrane, and translocation of the repeat united to the periplasmic space followed by their polymerization and export through the outer membrane.Some enzymes, such as UDP-glucose pyrophosphorylase (UGP) , TDP-glucose pyrophosphorylase (TGP) and UDP-glucose dehydrogenase (UGD) , are critical for gellan gum biosynthesis.Strains used for gellan gum production could be acquired by mutagenesis, gene recombining and gene knockout.Some new technologies, such as the optimal carbon and nitrogen sources and C/N, the optimal fermentation temperature and dissolved oxygen control, the fermentation kinetics model and response surface experimental design methods, were being used in gellan gum production gradually.In this paper, the research progress related to biosynthesis pathway of gellan and biosynthetic enzymes in microorganisms were reviewed, and the latest research of gellan producing strains was summarized. At last, we concluded an outlook for research directions in building gellan genetically engineered strains.
  • [1]

    Gai Z, Wang X, Zhang X, et al.Genome sequence of Sphingomonas elodea ATCC31461, a highly productive industrial strain of gellan gum[J].J Bacteriol, 2011, 193 (24) :7015-7016.

    [2]

    Bajaj IB, Survase SA, Saudagar PS, et al.Gellan gum:fermentative production, downstream processing and applications[J].Food Technol Biotechnol, 2007, 45 (4) :341-354.

    [3]

    Freitas F, Alves VD, Reis MA.Advances in bacterial exopolysaccharides:from production to biotechnological applications[J].Trends Biotechnol, 2011, 29 (8) :388-398.

    [4]

    Taylor DL, Ferris CJ, Maniego AR, et al.Characterization of gellan gum by capillary electrophoresis[J].Aust J Chem, 2012, 65:1156-1164.

    [5]

    Wu X, Li O, Chen Y, et al.A carotenoid-free mutant strain of Sphingomonas paucimobilis ATCC31461for the commercial production of gellan[J].Carbohydrate Polymers, 2011, 84 (3) :1201-1207.

    [6] 王霞, 袁永, 黎盛基, 等.结冷胶生物合成机理研究进展[J].中国生物工程杂志, 2005, 25 (11) :62-65.
    [7]

    Rocha J, Granja AT, Sá-Correia I, et al.Cloning, expression, purification, crystallization and preliminary crystallographic studies of UgdG, an UDP-glucose dehydrogenase from Sphingomonas elodea ATCC31461[J].Acta Crystallogr Sect F Struct Biol Cryst Commun, 2010, 66 (Pt1) :69-72.

    [8] 王琴丹, 李柏林, 欧杰.结冷胶的生物合成研究进展[J].食品科学, 2008, 29 (10) :689-693.
    [9] 王姗杰, 詹晓北, 吴剑荣, 等.低能氮离子注入诱变选育高产结冷胶菌株的研究[J].工业微生物, 2010 (2) :20-24.
    [10]

    Vartak NB, Lin CC, Cleary JM, et al.Glucose metabolism in Sphingomonas elodea:pathway engineering via construction of a glucose-6-phosphate dehydrogenase insertion mutant[J].Microbiology, 1995, 141:2339-2350

    [11]

    Zhu L, Wu X, Li O, et al.Cloning and knockout of phytoene desaturase gene in Sphingomonas elodea ATCC31461for economic recovery of gellan gum[J].J Ind Microbiol Biotechnol, 2011, 38 (9) :1507-1513.

    [12] 黄海东, 刘云, 刘如林.合成生物聚合物的重要微生物资源-鞘氨醇单胞菌[J].微生物学报, 2009, 49 (5) :560-566.
    [13]

    West TP.Effect of temperature on bacterial gellan production[J].World Journal of Microbiology and Biotechnology, 2003, 19 (6) :649-652.

    [14]

    West TP, Fullenkamp NA.Effect of culture medium pH on bacterial gellan production[J].Microbios, 2001, 105:133-140.

    [15]

    Fialho AM, Moreira LM, Granja AT, et al.Occurrence, production, and applications of gellan:current state andperspectives[J].Appl Microbiol Biotechnol, 2008, 79 (6) :889-900.

    [16]

    Harding NY, Patel YN, McQuown JO.Mutant strain of Sphingomonas elodea which produces non-acetylated gellan gum[P].US Patent4352523, 2002.

    [17]

    Harding NE, Patel YN, Coleman R.Targeted gene deletions for polysaccharide slime formers[P].US Patents, 2006.

    [18]

    Cleary JM, Coleman RJ, Harding NE, et al.Genetically purified gellan gum[P].US patent7361754, 2007.

    [19]

    Wu XC, Chen YM, Li YD, et al.Constitutive expression of Vitreoscilla haemoglobin in sphingomonas elodea to improve gellan gum production[J].Journal of Applied Microbiology, 2011, 110 (2) :422-430.

    [20]

    Kanari B, Banik RR, Upadhyay SN.Effect of envirnmental factors and carbohydrateon gellan gum prduction[J].Appl Biochem Biotechnol, 2002, 102-103 (1-6) :129-140.

    [21]

    Ashtaputre AA, Shah AK.Studies on a Viscous, Gel-Forming Exopolysaccharide from Sphingomonas paucimobilis GS1[J].Appl Environ Microbiol, 1995, 61 (3) :1159-1162.

    [22]

    Fialho AM, Martins LO, Donval ML, et al.Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC31461from lactose compared with those produced from glucose and from cheese whey[J].Appl Environ Microbiol, 1999, 65 (6) :2485-2491.

    [23]

    Bajaj IB, Saudagar PS, Singhal RS, et al.Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC31461[J].J Biosci Bioeng, 2006, 102 (3) :150-156.

    [24]

    Banik RM, Santhiagu A, Upadhyay SN.Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC31461in molasses based medium using response surface methodology[J].Bioresour Technol, 2007, 98:792-797.

    [25]

    Dreveton E, Frederic M, Jacqueline L, et al.Effect of mixing and mass transfer conditions on gellan production by Auromonaselodea[J].Ferment Bioerrg, 1994, 77:642-649.

    [26]

    Jin H, Lee NK, Shin MK, et al.Production of gellan gum by Sphingomonas paucimobilis NK2000with soybean pomace[J].Biochemical Engineering Journal, 2003, 16 (3) :357-360.

    [27] 胡桂萍, 刘波, 朱育菁, 等.少动鞘脂单胞菌产结冷胶发酵培养基的响应面法优化[J].生物数学学报, 2012, 27 (3) :507-517.
    [28]

    Vanderhoff A, Gibbons WR, Bauer N, et al.Development of a low-cost medium for producing gellan from Sphingomonas paucimobius[J].Journal of Biotech Research, 2010 (2) :67-78.

    [29]

    Kim MK, Lee IY, Ko JH, et al.Higher intracellular levels of uridine monophosphate under nitrogen-limited conditions enhance the metabolic flux of curdlan synthesis in Agrobacterium species[J].Biotechnol Bioeng, 1999, 62:317-323.

    [30]

    Giavasis1, Harvey LM, McNeil B.The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis[J].Enzyme and Microb Technol, 2006, 38:101-108.

    [31]

    Banik RM, Santhiagu A.Improvement in production and quality of gellan gum by Sphingomorras paucimobilis under high dissolved oxygen tension levels[J].Biotechnol Lett, 2006, 28:1347-1350.

    [32]

    Arockiasamy S, Banik RM.Optimization of gellan gum production by Sphingomonas paucimobilis ATCC31461with nonionic surfactants using central composite design[J].J Biosci Bioeng, 2008, 105 (3) :204-210.

    [33]

    Banik RM, Santhiagu A, Upadhyay SN.Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461in molasses based medium using response surface methodology[J].Bioresour Technol, 2007, 98:792-797

    [34] 徐晓琴, 蒋德宏, 黄金, 等.微生物多糖结冷胶的分批发酵动力学模型[J].化学工程, 2011, 39 (11) :1-5.
    [35]

    Wang X, Xu P, Yuan Y, et al.Modeling for gellan gum production by Sphingomonas paucimobilis ATCC31461in a simplified medium[J].Appl Environ Microbiol, 2006, 72 (5) :3367, 3374.

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-04

目录

    /

    返回文章
    返回