Science and Technology of Food Industry

王 伟,何俊萍*,王明空,康云峰,赵丽娟 (河北农业大学食品科技学院,河北保定 071001)

摘 要:色泽是评价真空冷冻干燥绿芦笋质量的重要指标,本实 验从漂烫和护绿剂浸泡处理两个环节对真空冷冻干燥绿 芦笋的护绿工艺进行研究。运用 U₁₂(12²×6)均匀实验研究 不同漂烫条件对绿芦笋营养成分的影响,利用 L16(45)正交 实验研究不同护绿处理的护绿效果,最终得出真空冷冻 干燥绿芦笋较优护绿工艺条件为:切分长度5~6 cm 85~ 90℃条件下漂烫 3.5~4min ;0.3mol/L 的 Na₂CO₃ 溶液浸 泡 40s; 护绿剂 pH7.5、Zn (CH3COO)2 浓度 200 mg/kg、 CuSO₄ 浓度 50mg/kg ,浸泡时间 8h。

关键词:真空冷冻干燥、绿芦笋、护绿工艺

Abstract: Color is one of the most important quality indexes of vacuum freeze -drying green asparagus. Blanching and soaking treatments are studied in this experiment for green -keeping effects on vacuum freeze -drying green asparagus. changes in nutrition under different blanching were studied by the $U_{12}(12^2\times6)$ uniform design, and the effects of green -keeping after different green keeping treatments were studied by the L₁₆(4⁵) orthogonal design. The results show the following optimal conditions: cutting length of green asparagus was 5~6 cm, and the best blanching treatment was blanching green-asparagus at 85~ 90°C for 3.5~4min; concentration of Na₂CO₃ was 0.3mol/L, and soaking time was 40s;pH of green -keeping solutiont was 7.5, in which concentration of Zn(CH₃COO)₂ was 200mg/kg and that of CuSO₄ was 50 mg/kg, and the soaking time was 8h.

Key words: vacuum freeze-drying; green asparagus; greenmaintaining technology

中图分类号:TS255.52 文献标识码:A 文章编号:1002-0306(2006)09-0136-04

芦笋(Asparagus officinalis L.),别名石刁柏,为 百合科天门冬属多年生宿根草本植物,未经培土软 化,嫩茎见阳光后变成绿色的称为绿芦笋!!。绿芦笋

收稿日期:2006-01-24 *通讯联系人

作者简介:王伟(1979-),女,在读硕士研究生,从事农产品加工与贮 藏工程研究。

传统的加工产品主要为罐头和速冻制品,技术含量 低、附加值少、缺乏市场竞争力四,所以,将绿芦笋进 行真空冷冻干燥,生产高附加值的脱水绿芦笋逐渐 为研究者所重视。护绿工艺是真空冷冻干燥绿芦笋 生产过程中的重要环节,将直接影响到真空冷冻干 燥绿芦笋的商品价值。本研究主要通过漂烫处理抑 制酶促褐变反应的发生^[3] ,通过用 Zn²⁺和 Cu²⁺置换叶 绿素中的 Mg2+,减少叶绿素的损失41,最终使真空冷 冻干燥绿芦笋保持良好的色泽,提高脱水绿芦笋的 品质。

1 材料与方法

1.1 材料与设备

绿芦笋 品种为 UC157 F-2 ,采自保定唐庄 ;乙 酸锌、硫酸铜、无水碳酸钠、无水氯化钙、蒽酮、浓硫 酸、2,4-二硝基苯肼、草酸、硫脲、活性碳、柠檬酸、亚 硫酸钠、亚铁氰化钾、盐酸 以上均为分析纯 ;实验 用水 为蒸馏水。

756PC(IV)型紫外可见分光光度计 pH211C 酸碱 度离子计测定仪 ,BS214D 电子天平,恒温水浴锅及 实验室常用仪器设备。

1.2 实验方法

工艺流程 新鲜绿芦笋→清洗→切分→ Na₂CO₃溶液浸泡→漂烫→冷却→护绿剂浸泡→真空 冷冻干燥

1.2.2 漂烫工艺研究 漂烫的主要作用是钝化绿芦 笋中酶的活性,抑制酶促褐变的发生。在笋体内,与 酶促褐变有关的酶主要是过氧化物酶(POD)和多酚 氧化酶(PPO)⁵ POD 比PPO更耐热,所以将POD的 活性作为判断绿芦笋体内酶是否失活的标准,只要 彻底抑制了 POD 的活性,就可以有效地防止酶促褐 变的发生。但过度漂烫会使绿芦笋中部分汁液流失, 造成可溶性营养物质的损失6%,尤其是维生素 C和总

Vol.27, No.09, 2006

糖损失较大,所以,将维生素 C 和总糖的保留率作为绿芦笋营养物质保留的指标。传统加工中只需对绿芦笋进行适当的整形,而在真空冷冻干燥中则需对绿芦笋进行切分,以加快干燥速率,保证干燥的顺利进行。因此,本研究通过控制绿芦笋的切分长度、漂烫温度和漂烫时间,既能最大限度地降低维生素 C 和总糖的损失,又能保证 POD 失活。由于对绿芦笋真空冷冻干燥中漂烫工艺的研究资料较少,需选择较多的水平进行研究,所以先以绿芦笋切分长度、漂烫温度、漂烫时间为因素(表 1),做 $U_{12}(12^2 \times 6)$ 均匀实验(表 3),以漂烫后绿芦笋维生素 C 和总糖的保留率为指标,利用 SAS 软件对检测结果进行回归分析[7],计算回归系数,确定较优漂烫工艺条件。再在不同的漂烫温度下检验 POD 失活的时间,最终确定合适的漂烫温度和时间。

1.2.3 护绿工艺研究 在较优漂烫工艺条件下 ,采用 $Zn(CH_3COO)_2$ 和 $CuSO_4$ 作为混合护绿剂对绿芦笋进行护绿处理 $^{[4]}$ 。绿芦笋表面覆盖了一层致密的蜡膜 ,阻碍 Zn^{2+} 和 Cu^{2+} 的渗透 ,需要在护绿前破坏表层的蜡膜 ,根据研究结果 ,绿芦笋在 Na_2CO_3 溶液中浸泡 40s 除膜效果较好 , 所以确定 Na_2CO_3 溶液浸泡的时间为 $40s^{[8]}$,以 Na_2CO_3 溶液浓度、护绿剂 pH(用柠檬

酸和 Na_2SO_3 调节 λ Zn $(CH_3COO)_2$ 浓度、 $CuSO_4$ 浓度和护绿时间为因素(表 2),以护绿效果的感官评分为指标,作 $L_{16}(4^5)$ 正交实验(表 5),实验重复三次,对实验结果进行方差分析和 LSD 多重比较问根据多重比较的结果确定护绿的工艺参数。

1.2.4 感官评分标准 采用九分制评分法,色泽与天然鲜笋接近,基本无褐变(7~9分);与天然鲜笋颜色差别小,褐变小(4~6分);与天然鲜笋颜色差别大,褐变大(1~3分)。选择9个人(4男、5女)进行评分,计算平均值,位于两者之间酌情计分^四。

1.2.5 理化指标检测方法 POD 活性检测:愈创木 酚法 $^{[10]}$;总糖测定 :蒽酮比色法 $^{[11]}$;维生素 C 测定 2 , 4—二硝基苯肼比色法 $^{[11]}$ 。

2 结果与分析

2.1 漂烫工艺确定

2.1.1 $U_{12}(12^2\times6)$ 均匀实验结果 见表 3。根据表 3 的结果,利用 SAS 软件对维生素 C 保留率进行回归分析 拟合的模型为:

 $= -488.91 + 10.44x_1 + 12.30x_2 + 0.76x_3 - 0.53x_1^2 - 0.10x_2x_1 - 0.07x_2^2 + 1.50x_3x_1 - 1.67x_3^2$

经 F 检验 ,Pr=0.0059<0.05 ,所以回归方程显著。

表 1 U	$12(12^2 \times 6)$)均匀实验	因素水平表
-------	---------------------	-------	-------

				(,							
因素						小	平					
	1	2	3	4	5	6	7	8	9	10	11	12
x ₁ 切分长度(cm)	1	2	3	4	5	6	7	8	9	10	11	12
x₂ 漂烫温度(°C)	75	80	85	90	95	100						
x3 漂烫时间(min)	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0

表 2 L₁₆(45) 正交实验因素水平表

水平	因素						
	A Na ₂ CO ₃ 溶液浓度(mol/L)	ВрН	C Zn(CH ₃ COO) ₂ 浓度(mg/kg)	D CuSO ₄ 浓度(mg/kg)	E 护绿时间(h)		
1	0.20	6.5	50	50	8		
2	0.25	7.0	100	75	12		
3	0.30	7.5	150	100	16		
4	0.35	8.0	200	125	20		

表 3 U₁₂(12²×6)均匀实验设计及结果

实验号	\mathbf{x}_1	切分长度(cm)	\mathbf{x}_2	漂烫温度(℃)	X ₃	漂烫时间(min)	Vc 保留率(%)	总糖保留率(%)
1	1	1	3	85	8	6.0	28.13	21.46
2	2	2	6	100	3	3.5	66.09	77.96
3	3	3	3	85	11	7.5	23.17	24.10
4	4	4	6	100	6	5.0	59.94	62.79
5	5	5	2	80	1	2.5	80.79	85.17
6	6	6	5	95	9	6.5	62.04	71.08
7	7	7	2	80	4	4.0	76.42	81.29
8	8	8	5	95	12	8.0	46.87	47.63
9	9	9	1	75	7	5.5	72.91	78.96
10	10	10	4	90	2	3	73.32	86.69
11	11	11	1	75	10	7	68.53	76.32
12	12	12	4	90	5	4.5	74.68	83.53

Science and Technology of Food Industry

根据 SAS 软件的输出结果,从响应面的典型分析可以得出,稳定点的坐标为 x_1 =6.03、 x_2 =87.82、 x_3 =2.94,在稳定点的最大预测值为 83.74,即切分和漂烫工艺的较优参数为:切分长度为 6.03cm 漂烫温度为87.82°C 漂烫时间为 2.94min。此时,维生素 C 的保留率在理论上最大,为 83.74%。

根据表 3 的结果,利用 SAS 软件对总糖保留率进行回归分析,拟合的模型为:

 $\hat{y} = -1430.55 + 42.08x_1 + 31.69x_2 - 2.12x_3 - 0.71x_1^2 - 0.42x_2x_1 - 0.16x_2^2 + 1.41x_3x_1 - 11.13x_3^2$

经 F 检验 ,Pr=0.0203<0.05 ,所以回归方程显著。

根据 SAS 软件的输出结果,从响应面的典型分析可以得出 稳定点的坐标为 x_1 =4.98、 x_2 =90.07、 x_3 =1.66,在稳定点的最大预测值为 99.61,即切分和漂烫工艺的较优参数为:切分长度为 4.98cm,漂烫温度为 90.07℃,漂烫时间为 1.66min。此时,总糖的保留率在理论上最大,为 99.61%。

综合以上两个结论,对工艺参数进行适当调整,得到能够较好地保留绿芦笋营养成分的漂烫工艺参数是:切分长度 $5{\sim}6\mathrm{cm}$,漂烫温度 $85{\sim}90{\circ}\mathbb{C}$,漂烫时间 $2{\sim}3\mathrm{min}$ 。

2.1.2 漂烫处理与 POD 活性的关系 由表 4 可知,切分长度为 $5\sim6\mathrm{cm}$ 的绿芦笋中 POD 在 $85\sim90^{\circ}$ 条件下失活的最短时间分别为 $4\sim3.5\mathrm{min}$,所以,以漂烫过程中营养成分变化和 POD 的活性为主要研究对象,在尽可能减少营养成分损失的前提下,为保证 POD 完全失活,应确定真空冷冻干燥绿芦笋的漂烫工艺条件为 :切分长度 $5\sim6\mathrm{cm}$ 、漂烫温度 $85\sim90^{\circ}$ 、漂烫时间 $3.5\sim4\mathrm{min}$ 。

表 4 漂烫工艺条件与 POD 活性的关系

漂烫时间(min) ——	漂烫温	∃度(℃)
/宗炎时间(min) ──	85	90
1.0	+	+
1.5	+	+
2.0	+	+
2.5	+	+
3.0	+	+
3.5	+	_
4.0	_	

注 "+"为阳性 代表 POD 未失活 "-"为阴性 代表 POD 失活。

2.2 L₁₆(4⁵)正交实验结果及分析

在实验所确定的较好的漂烫操作基础上,进一步用 Zn^{2+} 和 Cu^{2+} 置换叶绿素中的 Mg^{2+} ,对绿芦笋进行护绿处理。 $L_{16}(4^5)$ 正交实验结果见表 5。

利用 SAS 软件对表 5 的数据进行方差分析 ,分 析结果见表 6。

由表 6 可知 ,因素 A、B、D、E 对护绿的效果有极显著影响 ,因素 C 对护绿的效果有显著影响。采用 LSD 法对这五个因素进行多重比较 ,结果见表 7 至

表 5 L₁₆(4⁵)正交实验设计及结果

实验号-			因素			É	色泽评分	ή
头 孤与	A	В	С	С	E	1	2	3
1	1	1	1	1	1	6.3	6.5	7.1
2	1	2	2	2	2	6.5	5.2	5.4
3	1	3	3	3	3	4.4	6.1	5.6
4	1	4	4	4	4	5.7	6.3	5.2
5	2	1	2	3	4	3.6	5.4	4.7
6	2	2	1	4	3	2.2	4.1	3.7
7	2	3	4	1	2	7.6	6.3	7.6
8	2	4	3	2	1	5.9	6.4	6.7
9	3	1	3	4	2	5.7	6.1	6.4
10	3	2	4	3	1	6.9	5.1	6.3
11	3	3	1	2	4	6.5	6.4	6.0
12	3	4	2	1	3	6.9	5.7	6.1
13	4	1	4	2	3	6.2	6.3	7.9
14	4	2	3	1	4	5.8	6.1	5.5
15	4	3	2	4	1	7.3	8.4	7.1
16	4	4	1	3	2	5.8	6.2	6.7

表 6 方差分析表

变异来源	平方和	自由度	均方	F 值
A	10.11895833	3	3.37298611	7.31**
В	11.71062500	3	3.90354167	8.46**
C	4.26562500	3	1.42187500	3.08*
D	6.94062500	3	2.31354167	5.01**
E	12.12729167	3	4.04243056	8.76**
误差	14.76666667	32		
总变异	59.92979167	47		

表 11。

2.2.1 Na₂CO₃ 溶液浓度多重比较 从表 7 可以看出, Na₂CO₃ 溶液浓度为第四水平时,色泽评分的均值较大 Na₂CO₃ 溶液浓度的较好取值为 0.35mol/L,第三和第四水平间的差异不显著,所以,Na₂CO₃ 溶液为 0.3mol/L 也可以作为选择对象。实验表明,用 0.3mol/L 的 Na₂CO₃ 溶液处理的绿芦笋口感好于 0.35mol/L,最终确定 Na₂CO₃ 溶液浓度为 0.3mol/L。

表 7 Na₂CO₃ 溶液浓度多重比较

A 因素	A_4	A_3	A_1	\mathbf{A}_2
\overline{X}_{i}	6.6083	6.1750	5.8583	5.3500
显著性(5%)	a	ab	be	c

2.2.2 pH 多重比较 由表 8 的结果可知,当 pH 为第三水平时,色泽评分的均值较大,所以护绿剂 pH 的较好取值为 7.5。从表中还可看出 pH 第四水平和第三水平的差异不显著,所以 pH 为 8 也可作为备选的对象。但在实验中发现,当 pH 为 8 时,护绿剂中的 Zn^{2+} 和 Cu^{2+} 会和 OH^{-} 生成沉淀,影响护绿效果,而 pH 为 7.5 时,既可以保证较好的护绿效果,又不会生成沉淀,所以确定护绿剂 pH 为 7.5。

2.2.3 $Zn\ (CH_3COO)_2$ 浓度多重比较 从表 9 可知 $Zn\ (CH_3COO)_2$ 浓度的较好取值为第四水平,即 200mg/kg。而 $Zn(CH_3COO)_2$ 浓度第四水平和第二、三水平间没有显著差别 ,考虑到 Zn^{2+} 为人体所需的微

Vol.27, No.09, 2006

	衣 8 pn 多里CX					
B因素	B_3	B_4	B_{1}	B_2		
— X _i	6.6083	6.1333	6.0167	5.2333		
显著性(5%)	a	ab	b	c		

	23	24	21	2-2				
Xi	6.6083	6.1333	6.0167	5.2333				
显著性(5%)	a	ab	b	c				
	表 9 Zn(CH ₃ COO) ₂ 浓度多重比较							
C因素	C_4	C_2	C ₃	C_1				
_ X _i	6.4500	6.0250	5.8917	5.6250				
显著性(5%)	a	ab	ab	b				
	表 10 0	EuSO ₄ 浓度多	重比较					
D因素	D_1	D_2	D_4	D_3				
_ X _i	6.4583	6.2833	5.6833	5.5667				
显著性(5%)	a	a	b	b				
表 11 护绿时间多重比较								
E因素	E_{1}	E_2	E_4	E_3				
_ X _i	6.6667	6.2917	5.6000	5.4333				

量元素,且极限摄入量较高,所以选择浓度较大的水 平,确定 Zn(CH₃COO)₂ 浓度为 200mg/kg。

h

2.2.4 CuSO₄ 浓度多重比较 从表 10 可以看出, CuSO₄浓度的较好取值为第一水平,即50mg/kg, 且 CuSO₄ 浓度取第一水平和第二水平时护绿效果 差别不显著。Cu2+为人体限量元素,在食品中的添加 量有严格的限制,在保证较好的护绿效果的同时, 应尽量减少 CuSO4 用量,最终选择 CuSO4 浓度为 50 mg/kg

2.2.5 护绿时间多重比较 由表 11 可知 ,护绿时间 为第一水平 8h 时,色泽评分均值较大,效果较好,护 绿时间为 8h 和 12h 时 护绿效果的差别不显著。由 于长时间浸泡会导致可溶性营养成分溶解在水中, 造成营养成分的过度流失,所以选择护绿效果较好 且浸泡时间较短的取值水平,确定护绿时间为8h。

3 结论

显著性(5%)

本研究最终确定真空冷冻干燥绿芦笋加工中较 好的漂烫工艺条件为:切分长度5~6cm、漂烫温度 85~95℃、漂烫时间 3.5~4min ;较好的护绿工艺条件 为:Na₂CO₃ 溶液浓度 0.3mol/L、浸泡时间 40s、护绿 剂 pH7.5、Zn(CH₃COO)₂ 浓度 200mg/kg、CuSO₄ 浓度

50mg/kg、浸泡时间8h。

4 讨论

4.1 利用护绿剂对绿芦笋进行护绿处理时,各种金 属离子对叶绿素中 Mg²⁺的置换机理相同,但复绿效果 却不同,在相同浓度下, Cu2+的护绿效果比 Zn2+好(4), 所 以本实验选择 Cu2+和 Zn2+作为混合护绿剂。国家规 定食品中铜的允许限量一般不超过 5~20mg/kg,本 研究确定 CuSO₄ 的浓度为 50mg/kg ,Cu²⁺用量符合国 家规定。

4.2 在研究中发现 ,绿芦笋不同部位的 POD 活性也 不相同,一般是基部>中部>笋尖,所以,在进行POD 活性检测时,应以笋体基部的POD彻底失活为标准。

参考文献:

- [1] 马凤桐. 芦笋—高效营养保健型蔬菜[M]. 北京:世界图书 出版公司 ,1994.
- [2] 陈益忠. 绿芦笋的产品开发及市场前景[J]. 农牧产品开 发 2001(5)20~22.
- [3] 蒲彬 ,李先义 ,刘娅 ,等. 速冻芦笋的热烫工艺条件研究[J]. 食品与机械 2003(3):6~8.
- [4] 焦凌梅,袁唯. 绿色蔬菜加工护绿技术的研究及进展[J]. 保鲜与加工 2004 4(1):11~14.
- [5] 薛志勇. 影响果蔬干制品质量的主要因素[J]. 食品与药 品 2005 7(2A) 52~54.
- [6] M H Lau , J Tang , B G Swanson. Kinetics of textural and color changes in green asparagus during thermal treatments[J]. Journal of Food Engineering 2000, 45 231~236.
- [7] 王钦德 杨坚.食品实验设计与统计分析[M].北京:中国农 业大学出版社 2003.
- [8] 沈卫荣 ,韩丽萍 ,江莹 ,等. 乳酸盐护色剂在绿芦笋护色保 鲜工艺中的应用[J]. 陕西农业科学 2003(4) 8~9.
- [9] 徐艳阳,张慜,孙金才.真空冷冻干燥毛竹笋的实验研究[J]. 食品工业科技 2005(2)99~101.
- [10] 张德权,艾启俊. 蔬菜深加工新技术[M]. 北京:化学工业 出版社 2002.
- [11] 大连轻工业学院等八大院校编. 食品分析[M].北京:中国 轻工业出版社 2002.

(上接第 135 页)

[6] 张惟杰.糖复合物生化研究技术(第二版)[M].杭州:浙江大学 出版社,1999.12~13.

[7] 王立娟,李坚,张丽君.微波法提取槐米中芦丁的工艺条件 [J].东北林业大学学报,2003 31(3):36~37.

[8] 刘依,韩鲁佳.微波技术在板蓝根多糖提取中的应用[J].中国

农业大学学报, 2002, 7(2): 27~30.

[9] 江河源,蒋迎.茶叶多糖的微波辅助提取技术研究[J].食品 科技 2003(10): 17~19.

[10] 郑少华,姜奉华.实验设计与数据处理[M].北京:中国建材 工业出版社, 2004,3.67~102.